

AET65
Fingerprint Reader

Application Programming Interface

Subject to change without prior notice
info@acs.com.hk

www.acs.com.hk

info@acs.com.hk
www.acs.com.hk

Page 2 of 81

AET65 API
Version 1.00

Table of Contents
1.0. Introduction ... 5

2.0. BSAPI ... 6

2.1. Terminology ...6
2.2. Overview..6
2.3. Architecture..6
2.4. Naming Conventions ...7

3.0. BSAPI.DLL Functions ... 8

3.1. General Description ...8
3.1.1. Error Handling ...8
3.1.2. Memory Management ...8
3.1.3. Interactive Operations...8
3.1.4. Multi-threading ..8
3.1.5. Anti-latent Checking..9

3.2. Application General Functions...10
3.2.1. ABSInitialize ..10
3.2.2. ABSInitializeEx..10
3.2.3. ABSTerminate...10
3.2.4. ABSOpen ..11
3.2.5. ABSClose..12
3.2.6. ABSEnumerateDevices ..12
3.2.7. ABSGetDeviceProperty ..13
3.2.8. ABSFree..13

3.3. Biometric Functions ...14
3.3.1. ABSEnroll..14
3.3.2. ABSVerify..15
3.3.3. ABSVerifyMatch ..16
3.3.4. ABSCapture ..17
3.3.5. ABSCheckLatent...18
3.3.6. ABSNavigate...19

3.4. Image Grabbing Functions ..20
3.4.1. ABSGrab ...20
3.4.2. ABSRawGrab..21
3.4.3. ABSListImageFormats ..22
3.4.4. ABSGrabImage...23
3.4.5. ABSRawGrabImage..24

3.5. Miscellaneous Functions ...26
3.5.1. ABSCancelOperation..26
3.5.2. ABSSetAppData..26
3.5.3. ABSGetAppData ...27
3.5.4. ABSSetSessionParameter..27
3.5.5. ABSGetSessionParameter ...28
3.5.6. ABSSetGlobalParameter ..28
3.5.7. ABSGetGlobalParameter..29
3.5.8. ABSSetLED...29
3.5.9. ABSGetLED ..30
3.5.10. ABSBinarizeSampleImage..32
3.5.11. ABSGetLastErrorInfo ..33
3.5.12. ABSEscape ...33

4.0. BSGUI.DLL Functions... 35

4.1. Using BSGUI.DLL..35
4.2. GUI Customization...35
4.3. Default Callback Implementation...35

4.3.1. ABSDefaultCallback..35
4.4. ABS_DEFAULT_CALLBACK_CONTEXT...37

info@acs.com.hk
www.acs.com.hk

Page 3 of 81

AET65 API
Version 1.00

4.5. Flags for ABS_DEFAULT_CALL BACK_CONTEXT ..
 (ABS Default_CALLBACK_FLAG_xxxx) ...37

5.0. Declarations... 38

5.1. Basic Types ...38
5.2. Specific Types ...38

5.2.1. ABS_DATA ...38
5.2.2. ABS_BIR_HEADER..39
5.2.3. ABS_BIR ...40
5.2.4. ABS_OPERATION..41
5.2.5. ABS_PROFILE_DATA..42
5.2.6. ABS_SWIPE_INFO...42
5.2.7. ABS_IMAGE_FORMAT ..43
5.2.8. ABS_IMAGE ...44
5.2.9. ABS_PROCESS_DATA..45
5.2.10. ABS_PROCESS_BEGIN_DATA ..45
5.2.11. ABS_PROCESS_PROGRESS_DATA ...45
5.2.12. ABS_PROCESS_SUCCESS_DATA ..46
5.2.13. ABS_NAVIGATION_DATA ...46
5.2.14. ABS_DEVICE_LIST_ITEM ...46
5.2.15. ABS_DEVICE_LIST..47
5.2.16. ABS_CALLBACK ..48

6.0. Specific Constants.. 50

6.1. Flags for ABSInitializeEx (ABS_INIT_FLAG_xxxx) ...50
6.2. Flags for ABS_OPERATION (ABS_OPERATION_FLAG_xxxx)...50
6.3. Flags for Biometric and Image Grabbing Functions (ABS_FLAG_xxxx).............................51
6.4. Template Purpose Constants (ABS_PURPOSE_xxxx) ..52
6.5. Key Constants for ABS_PROFILE_DATA (ABS_PKEY_xxxx) ...53
6.6. ABS_PKEY_IMAGE_FORMAT Values (ABS_PVAL_IFMT_xxxx)56
6.7. ABS_PKEY_REC_TERMINATION_POLICY Values (ABS_PVAL_RTP_xxxx)..................60
6.8. ABS_PKEY_REC_SWIPE_DIRECTION Values (ABS_PVAL_SWIPEDIR_xxxx)..............61
6.9. ABS_PKEY_REC_NOISE_ROBUSTNESS Values (ABS_PVAL_NOIR_xxxx)..................61
6.10. ABS_PKEY_SENSOR_SECURITY_MODE values (ABS_PVAL_SSM_xxxx)63
6.11. Swipe Info Flags (ABS_SWIPE_FLAG_xxxx) ...64
6.12. Process Constants (ABS_PROCESS_xxxx) ...65
6.13. Device Property Constants (ABS_DEVPROP_xxxx) ..68
6.14. Session and Global Parameter Constants (ABS_PARAM_xxxx)..69
6.15. Parameter ABS_PARAM_CONSOLIDATION_TYPE Values
 (ABS_CONSOLIDATION_xxxx) ..72
6.16. Parameter ABS_PARAM_MATCH_LEVEL Values (ABS_MATCH_xxxx)..........................72
6.17. Parameter ABS_PARAM_ANTISPOOFING_POLICY Values ...

 (ABS_ANTISPOOFING_xxxx)...73
6.18. Callback Message Codes (ABS_MSG_xxxx)..73

7.0. List of Defined Result Codes ... 78

8.0. New Features in Version 3.5 .. 79

8.1. Global Parameter ABS_PARAM_IFACE_VERSION ..79
8.2. Dynamic Enrollment...79

8.2.1. Global Parameter ABS_PARAM_CONSOLIDATION_COUNT..................................79
8.2.2. Structure ABS_PROCESS_BEGIN_DATA...79
8.2.3. Structure ABS_PROCESS_PROGRESS_DATA ...79
8.2.4. Constant ABS_PROCESS_CONSOLIDATE..79

8.3. Image Grabbing Functions ..80
8.3.1. Constant ABS_FLAG_HIGH_RESOLUTION ...80
8.3.2. Structure ABS_IMAGE..80
8.3.3. New Grabbing Functions ..80

8.4. Global Parameter ABS_PARAM_POWER_SAVE_CHECK_KEYBOARD80

info@acs.com.hk
www.acs.com.hk

Page 4 of 81

AET65 API
Version 1.00

8.5. Internal Template Format Types ...80
8.6. Compatibility with Windows NT Services ..81
8.7. ABS_CALLBACK and Threads..81
8.8. Support for Terminal and Citrix..81

Figures
Figure 1: AET65 System Block Diagram..5

Figure 2: AET65 Connection ..5

info@acs.com.hk
www.acs.com.hk

Page 5 of 81

AET65 API
Version 1.00

1.0. Introduction
The AET65 is a composite device, consisting of a smart card reader and a swipe fingerprint sensor.
The smart card reader and the fingerprint sensor can be used independently, but combining the two
technologies provide a higher level of security in applications. The AET65’s system diagram is shown
below:

Figure 1: AET65 System Block Diagram

The smart card reader module, which is based on the ACR38-SAM core, follows the PC/SC API
standards. For information on the smart card reader module, please refer to the AET65 Smart Card
Reader Reference Manual document (REF_AET65_v1.0).

The purpose of this document is to describe the architecture and interface of Biometric Services API
(BSAPI). This is based on UPEK’s BSAPI Reference Manual and shall cover the Application
Programming Interface related only to the fingerprint sensor. This manual describes the BSAPI and
how to use the different libraries to program the fingerprint module of AET65. The libraries are
responsible for handling the communication details, parameter conversions and error handling
providing programmers a simple and consistent interface over all possible hardware. The architecture
of the BSAPI can be visualized as the diagram below:

Figure 2: AET65 Connection

info@acs.com.hk
www.acs.com.hk

Page 6 of 81

AET65 API
Version 1.00

2.0. BSAPI

2.1. Terminology
 BSAPI – Biometric Services API

 FM – fingerprint module (fingerprint reader device) connected to host

 HOST – computer where the FM is connected to

 BioAPI – the industry standard for biometric API, developed by BioAPI Consortium
[www.bioapi.org]. All references to BioAPI in this document assume version 1.1 of the
standard.

 BioAPI Framework – reference implementation of BioAPI, by BioAPI Consortium.

 (BioAPI) BSP – Biometry Service Provider; third-party module pluggable into BioAPI
Framework. BSP provides support for particular device (e.g. fingerprint reader).

 BSP API – API below BioAPI Framework, specifying interface between BioAPI framework
and BSPs.

 TFMESSBSP – UPEK BSP implementation, supporting TFM and ESS devices.

2.2. Overview
BSAPI was designed to meet these requirements:

 Similar to BioAPI: development team familiar with BioAPI should be able to adopt BSAPI
easily and in reasonably short time.

 Compatibility with TFMESSBSP: BSAPI will provide functions which can behave exactly as
corresponding functions in TFMESSBSP. (Future version of TFMESBSP can be implemented
on top of BSAPI easily.)

 BSAPI will be implemented in simple DLL. Unlike BioAPI, BSAPI does not require any
framework to use it.

 BSAPI will provide more functionality comparing to BioAPI, so more biometric and
miscellaneous features of our devices will be available (e.g. navigation).

 Avoid need to use any low level API (e.g. PTAPI).

Do not misunderstand the term “compatibility” with BioAPI as used in the list above. There will be no
binary compatibility between BioAPI and BSAPI, nor compatibility on source level. BSAPI will provide
set of function which will allow all code using BioAPI (with TFMESSBSP) to be rewritten to use BSAPI
instead, with exactly the same behavior.

In fact, as further described below, future versions of TFMESSBSP will be thin layer on top of BSAPI.

2.3. Architecture
BSAPI is composed of several dynamic libraries (.DLL on Windows. On other system, other file
extension is used.):

 BSAPI.DLL, which contains all core functionality. This library will be mostly platform
independent on source level. Porting BSAPI to additional platforms (e.g. Linux, Mac OS X)
will be relatively cheap and fast task assuming that the underlying libraries are ported as well.

 BSGUI.DLL providing default implementation of GUI callback. The library loads graphics from
separated .zip file (window decorations and feedback images), so that customization of look &
feel is possible. The library supports multiple languages (localization), generally those
supported in our other software. Applications can provide their own callback and in such case,
they do not use this library. Please note that currently BSGUI.DLL is available only for
Windows platform.

info@acs.com.hk
www.acs.com.hk

Page 7 of 81

AET65 API
Version 1.00

Application developers can choose from several approaches on how to deal with the GUI:

 Use BSGUI.DLL as it is, will guarantee appearance of the applications, consistent with their
own applications.

 Use BSGUI.DLL, with customized .zip file (some or all of the graphics in the .zip file can be
modified or replaced with other graphics).

 Apply their own callback implementation. This allows maximal freedom in customization,
including adding support for languages not supported by BSGUI.DLL.

BSAPI is implemented on top of BioFrame. The BioFrame is a library providing high level
management of the device, quality assurance and other policies. This allows users of BSAPI to
concentrate on application logic and not sink into low level details.

Future versions of BioAPI BSP will be redesigned as a simple layer on top of BSAPI to avoid duplicity
of code in BSAPI and TFMESSBSP implementations. BSAPI should be linked statically into the
TFMESSBSP. This will prevent unnecessary exporting BSAPI symbols from the DLL so users of
BioAPI could not mix the two APIs in one program by mistake. Also due to the nature of static libraries
only the required subset of BSAPI library will be included in the TFMESSBSP.

2.4. Naming Conventions
All identifiers (names of constants, types and functions) will use prefix “ABS”, and follow the patterns
below:

 ABS_MACRO_IDENTIFIER

 ABS_TYPE_IDENTIFIER

 ABSFunctionIdentifier()

In function prototypes special words IN, OUT and INOUT are used, to denote if the parameter is used
to pass data into the function, return some result data or both.

info@acs.com.hk
www.acs.com.hk

Page 8 of 81

AET65 API
Version 1.00

3.0. BSAPI.DLL Functions

3.1. General Description
BSAPI.DLL provides a set of functions which can read data from supported fingerprint sensor
devices, and which apply various biometric algorithms to these data.

The main header file declaring functions of BSAPI is bsapi.h. The header includes bstypes.h and
bserror.h which declare types and error status codes. The latter two headers are shared with the other
libraries the BSAPI consists of.

3.1.1. Error Handling

Almost all BSAPI.DLL functions return a status code ABS_STATUS. Code ABS_STATUS_OK (zero)
means success. All other values denote an error condition.

You may call ABSGetLastErrorInfo to retrieve more information about the error condition. Note that
the information is intended as a help for application and library developers and it's not intended to be
presented to end users.

If any BSAPI.DLL function fails, it frees any resources it might allocate. Values of output parameters
are defined only if the function succeeds i.e. if it returns ABS_STATUS_OK.

3.1.2. Memory Management

Some BSAPI.DLL functions allocate memory returned via output parameter to the calling application.
The application must use function ABSFree to free memory allocated by BSAPI.DLL in these cases.

3.1.3. Interactive Operations

Some of the BSAPI.DLL functions expect user’s interaction with FM. All these functions are
collectively called interactive operations in this document. Interactive operation functions share the
way how the interaction is achieved.

All those functions have pointer to structure ABS_OPERATION as their second parameter (just after
handle of a session). When you call any interactive operation function, it blocks until the operation fin-
ishes or until it is canceled. While the operation is processing, callback specified by
ABS_OPERATION is repeatedly called so that the application can provide feedback to end-user.

Note that the callback implementation has some limitations. The behavior is not defined if you don’t
respect them:

 You cannot throw exceptions from the callback (if you use BSAPI from C++ or other language
which supports them).

 You cannot call majority of BSAPI functions from the callback. You can safely call only
ABSFree, ABSCancelOperation and ABSGetLastErrorInfo from the callback.

Since version 3.5 of BSAPI, the callback is always called from a thread context where the interactive
operation function has been called. (In older versions of BSAPI, this was not guaranteed).

You may cancel any running interactive operation with ABSCancelOperation if needed. You may call
this function either from the callback itself or from any other thread if you associated unique operation
ID to the operation you need to cancel.

Please note that structure ABS_OPERATION contains member Flags which can influence how the
callback is called. See description of ABS_OPERATION to get more information on this topic.

3.1.4. Multi-threading

In general, BSAPI.DLL is thread-safe. You can call BSAPI.DLL functions concurrently from multiple
threads, including multiple biometric operations on one FM. If multiple threads call BSAPI.DLL
function which communicates with FM, one of the calls is blocked (for caller it seems that the
operation is still processing) and it is resumed after the thread communicating with the device is

info@acs.com.hk
www.acs.com.hk

Page 9 of 81

AET65 API
Version 1.00

finished.

If the function being suspended is an interactive operation, the application is informed about the
situation via the ABS_CALLBACK. See documentation of messages ABS_MSG_PROCESS_SUSPEND
and ABS_MSG_PROCESS_RESUME for more information.

The only exceptions are functions ABSInitialize and ABSTerminate. These two functions are not
thread-safe. This is usually not a problem, because they are called as part of application initialization
and termination respectively.

3.1.5. Anti-latent Checking

In general the goal of the anti-latent check is to minimize the negative impact of residual fingerprint
left on the surface of area sensor. This negative impact has two forms – security (risk of a false
accept) and convenience (risk of false reject due to the lowered image quality).

Note that for strip sensors, such checking is never performed because there is no danger, so for these
sensors the API automatically reports the last scan as not being latent.

There are two ways how to perform the anti-latent checking. The first one is built-in high level
biometric operations: enrollment and verification. I.e. calling ABSEnroll() or ABSVerify()
automatically involves the anti-latent checking and the function does not return with templates
evaluated as latent ones. Instead it asks user to clean sensor and scan finger again with appropriate
callback messages. This implicit anti-latent checking can be turned off and on by setting global
parameter ABS_PARAM_LATENT_CHECK. By default the checking is enabled.

The second way is to call ABSCheckLatent manually. BSAPI remembers automatically in a context
of session last scanned image, and when this function is called it checks whether that scan is or is not
latent.

Note that the logic of each check (implicit or explicit with ABSCheckLatent) is as follows. The last
scanned image is compared with the last swipe which was considered as a valid one. If the two are
same (according to the latent check algorithm), the result of the check is positive. If the two scans
differ, the last scan is automatically stored as the last valid scan, so any subsequent checks mean
that the last swipe is compared to this last scan.

This has one side effect: you should not make multiple latent checks after single scan because only
the first anti-latent check will return any meaningful data. This includes implicit checking, so you
should not call manually ABSCheckLatent after ABSEnroll or ABSVerify unless you disable the
implicit checking by the global parameter ABS_PARAM_LATENT_CHECK.

info@acs.com.hk
www.acs.com.hk

Page 10 of 81

AET65 API
Version 1.00

3.2. Application General Functions
The Application General Functions initialize the BSAPI library, open and close logical connections to
FM, and perform other miscellaneous tasks.

3.2.1. ABSInitialize

ABS_STATUS ABSInitialize(
void

)

Description
Initialize the BSAPI library. BSAPI must be initialized before
you can call any other function. It is called typically during
application startup.

Return Value ABS_STATUS
Result Code: ABS_STATUS_OK (0)
means success.

3.2.2. ABSInitializeEx

ABS_STATUS ABSInitializeEx(
IN ABS_DWORD dwFlags

)

Description
Initialize the BSAPI library. BSAPI must be initialized before
you can call any other function. It is called typically during
application startup.

Parameters

dwFlags
On Windows only flag ABS_INIT_FLAG_NT_SERVICE is
supported. On other systems, no flags are currently
supported.

Return Value ABS_STATUS
Result Code: ABS_STATUS_OK (0)
means success.

3.2.3. ABSTerminate

ABS_STATUS ABSTerminate(
void

)

Description

Uninitialize the BSAPI library. Must not be called while any
connections to FM are still open. It is not obligatory to call this
function, if the BSAPI library should be kept initialized until the
program exits, but it is recommended practice to do so.

Return Value ABS_STATUS
Result code. ABS_STATUS_OK (0)
means success.

info@acs.com.hk
www.acs.com.hk

Page 11 of 81

AET65 API
Version 1.00

3.2.4. ABSOpen

ABS_STATUS ABSOpen(
IN const ABS_CHAR *pszDsn
OUT ABS_CONNECTION *phConnection

)

Description Open a new session with a FM connected to this host.

Parameters

pszDsn Zero-terminated ASCII string describing the FM
connection parameters.

phConnection Resulting connection handle. At the end of the
connection it should be closed with ABSClose.

Return Value ABS_STATUS Result code. ABS_STATUS_OK (0)
means success.

Remarks

To close the connection you should call ABSClose.

To open a connection through USB, no extra parameters
are necessary.

Example:

DSN = "usb"

"device=X" (for USB only) This option can be used for
opening specified device if more than one are
simultaneously attached to the system. X is the device
name string identifying unambiguously required device
and it can be obtained from call of function
ABSEnumerateDevices (actually
ABSEnumerateDevices will give whole DSN string).
Note that X is dependent on host current system
configuration.

Example:

DSN =
"usb,device=\\?\usb#vid_0483&pid_2016#5&20
890ddc&0&1#

{d5620e51-8478-44bd-867e-aac02f883a00}"

3.2.5. ABSClose

ABS_STATUS ABSClose(
IN ABS_CONNECTION hConnection

)

Description Close a connection previously opened by ABSOpen.

Parameters

hConnection Connection handle of the connection to be closed

Return Value ABS_STATUS
Result code. ABS_STATUS_OK (0) means
success.

Remarks
Every successful call of ABSOpen should be paired with a
call to ABSClose.

3.2.6. ABSEnumerateDevices

ABS_STATUS ABSEnumerateDevices(
IN const ABS_CHAR *pszEnumDsn
OUT ABS_DEVICE_LIST **ppDeviceList

)

Description Enumerate currently connected fingerprint devices.

Parameters

pszEnumDsn

Zero terminated ASCII string describing the connection
interface, where the enumeration should be performed.

For example to enumerate all devices connected to USB
use string "usb".

ppDeviceList
Address of the pointer, which will be set to point to the list of
found devices. The data has to be freed by a call to
ABSFree.

Return Value ABS_STATUS
Result code. ABS_STATUS_OK (0)
means success.

Remarks
Note: Currently only devices on USB interface can be
enumerated.

Page 12 of 81

AET65 BSAPI
Version 1.2

info@acs.com.hk
www.acs.com.hk

3.2.7. ABSGetDeviceProperty

ABS_STATUS ABSGetDeviceProperty(
IN ABS_CONNECTION hConnection
IN ABS_DWORD dwPropertyId
OUT ABS_DATA **ppPropertyData

)

Description
Return data describing some property of device associated
with the current open session.

Parameters

hConnection Handle to the connection to FM.

dwPropertyld One of ABS_DEVPROP_xxxx constants, specifying what
device property the caller is interested in.

ppPropertyData

Address of a pointer which will be set to point to a data
block. The content of the data depends on dwPropertyId.
The data has to be freed by a call to ABSFree.

See documentation of the constants for specific information.

Return Value ABS_STATUS
Result code. ABS_STATUS_OK (0)
means success.

3.2.8. ABSFree

void ABSFree(
IN void *Memblock

)

Description
Use this function to release memory allocated by other
BSAPI.DLL functions.

Parameters

Memblock Address of a memory block to be released. It has no effect
if this parameter

Document Title Here Document Title Here Document Title Here

Page 13 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

3.3. Biometric Functions
We will describe the biometric functions in this chapter.

3.3.1. ABSEnroll

ABS_STATUS ABSEnroll(
IN ABS_CONNECTION hConnection
IN ABS_OPERATION *pOperation
OUT ABS_BIR **ppEnrolledTemplate
IN ABS_DWORD dwFlags

)

Description Scan the live finger, process it into a fingerprint template
and return it to the caller.

Parameters

hConnection Handle to the connection to FM.

pOperation See description of ABS_OPERATION.

Ppenrolled Template
Address of the pointer, which will be set to point to the
resulting template (BIR). The template has to be
discarded by a call to ABSFree.

dwFlags Reserved for future use. Set to zero.

Return Value ABS_STATUS
Result code. ABS_STATUS_OK (0)
means success.

Document Title Here Document Title Here Document Title Here

Page 14 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

3.3.2. ABSVerify

ABS_STATUS ABSVerify(
IN ABS_CONNECTION hConnection
IN ABS_OPERATION *pOperation
IN ABS_DWORD dwTemplateCount
IN ABS_BIR **pTemplateArray
OUT ABS_LONG *pResult
IN ABS_DWORD dwFlags

)

Description This function captures sample from the FM, processes it
into template and compares it with templates, specified
by the pTemplateArray parameter and finds out the
first template which matches the swiped finger.

Parameters

hConnection Handle to the connection to FM.

pOperation See description of ABS_OPERATION.

dwTemplateCount Count of templates in the pTemplateArray.

pTemplateArray Pointer to the array of pointers to templates.

pResult

Pointer to memory location, where result of the
comparing will be stored. The result is indexed into the
pTemplateArray, determining the matching template,
or -1 if no template matches.

dwFlags

Bitmask specifying flags, which modify slightly behavior
of the function.

This function supports flags ABS_FLAG_NOTIFICATION
and ABS_FLAG_AUTOREPEAT.

If ABS_FLAG_NOTIFICATION is set, the verification
operation does not show any GUI feedback until the
finger is swiped. This can be useful for applications doing
their own work; and only when user swipes, the
application processes some special action. Until the user
swipes, he is not disrupted with any dialog.

Showing/hiding of the dialog is controlled by messages
ABS_MSG_DLG_SHOW and ABS_MSG_DLG_HIDE.

If flag ABS_FLAG_AUTOREPEAT is used, the verification
is automatically restarted when the user's swipe does not
match any template in pTemplateArray. This is better
than calling the function in a loop until the user's swipe
matches some template in the pTemplateArray,
because this can prevent a GUI feedback dialog from
hiding and showing between the calls.

Return Value ABS_STATUS
Result code. ABS_STATUS_OK (0)
means success.

Document Title Here Document Title Here Document Title Here

Page 15 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

3.3.3. ABSVerifyMatch

ABS_STATUS ABSVerifyMatch(
IN ABS_CONNECTION hConnection
IN ABS_BIR *pEnrolledTemplate
IN ABS_BIR *pVerificationTemplate
OUT ABS_BOOL *pResult
IN ABS_DWORD dwFlags

)

Description Compares whether two given templates match or not.

Parameters

hConnection Handle to the connection to FM.

pEnrolledTemplate

The first template to be compared.

In the most common situation, when a template with
enrollment purpose is being matched with a template with
another purpose, the enrollment template has to be
passed as this parameter.

pVerificationTemplate

The second template to be compared.

In the most common situation, when a template with
enrollment purpose is being matched with a template with
another purpose, the latter template has to be passed as
this parameter.

pResult
Output parameter to be set to result of the comparing. Set
to ABS_TRUE if the two BIRs do match and ABS_FALSE if
they do not.

dwFlags Reserved for future use. Set to zero.

Return Value ABS_STATUS Result code. ABS_STATUS_OK (0)
means success.

Document Title Here Document Title Here Document Title Here

Page 16 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

3.3.4. ABSCapture

ABS_STATUS ABSCapture(
IN ABS_CONNECTION hConnection
IN ABS_OPERATION *pOperation
IN ABS_DWORD dwPurpose
OUT ABS_BIR **ppCapturedTemplate
IN ABS_DWORD dwFlags

)

Description
This function captures sample for the purpose specified
and creates a new fingerprint template from it.

Parameters

hConnection Handle to the connection to FM.

pOperation See description of ABS_OPERATION

dwPurpose

A value indicates a purpose of the biometric data capture.

It can be either ABS_PURPOSE_ENROLL or
ABS_PURPOSE_VERIFY. ABS_PURPOSE_UNDEFINED is
not allowed.

Note that calling ABSCapture() with dwPurpose set to
ABS_PURPOSE_ENROLL is obsolete and it is functionally
equivalent to calling ABSEnroll().

ppCapturedTemplate Pointer which is set to newly allocated template. Caller is
responsible to release the memory with ABSFree.

dwFlags

Bitmask specifying flags, which modify slightly behavior of
the function.

This function supports only flag
ABS_FLAG_NOTIFICATION. If it is set, the verification
operation does not show any GUI feedback until the finger
is swiped. This can be useful for applications doing their
own work; and only when user swipes, the application
processes some special action. Until the user swipes, he
is not disrupted with any dialog.

Showing/hiding of the dialog is controlled by messages
ABS_MSG_DLG_SHOW and ABS_MSG_DLG_HIDE.

The flag ABS_FLAG_NOTIFICATION can be used only in
case that dwPurpose is set to ABS_PURPOSE_VERIFY.

Return Value ABS_STATUS Result code. ABS_STATUS_OK (0)
means success.

Document Title Here Document Title Here Document Title Here

Page 17 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

3.3.5. ABSCheckLatent

ABS_STATUS ABSCheckLatent(
IN ABS_CONNECTION hConnection
IN void *pReserved
OUT ABS_BOOL *pboIsLatent
IN ABS_DWORD dwFlags

)

Description

Perform anti-latent check.

Note that ABSEnroll and ABSVerify perform the check
implicitly unless it is disabled with global parameter
ABS_PARAM_LATENT_CHECK, so you should not call this
function after ABSVerify() and ABSEnroll() after calling
those functions (assuming the global parameter
ABS_PARAM_LATENT_CHECK is turned on).

See chapter 2.1.5 for more information how the anti-latent
checking works.

Parameters

hConnection Handle to the connection to FM.

pReserved Reserved for future use. Set to NULL.

pboIsLatent
Pointer to ABS_BOOL, where the result of the check is
stored. It is set to ABS_TRUE, if the latest scanned finger
was detected as a latent finger; ABS_FALSE otherwise.

dwFlags Reserved for future use. Set to zero.

Return Value ABS_STATUS
Result code. ABS_STATUS_OK (0)
means success.

Document Title Here Document Title Here Document Title Here

Page 18 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

3.3.6. ABSNavigate

ABS_STATUS ABSNavigate(
IN ABS_CONNECTION hConnection
IN ABS_OPERATION *pOperation
IN ABS_DWORD dwFlags

)

Description

Switch FM to navigation mode (a.k.a. biometric mouse).

Not all devices support this mode. If the navigation is not
supported by the device, ABS_STATUS_NOT_SUPPORTED
is returned. Please note there are few very old legacy
devices where the navigation support is broken. With
these devices, the function never sends
ABS_MSG_NAVIGATE_CHANGE messages to the callback,
making the navigation mode unusable.

Remember that the function never returns
ABS_STATUS_OK because it does not return until the
function is canceled with ABSCancelOperation (or until
an error occurs).

Parameters

hConnection Handle to the connection to FM.

pOperation See description of ABS_OPERATION.

dwFlags Reserved for future use. Set to zero.

Return Value ABS_STATUS Result code.

Document Title Here Document Title Here Document Title Here

Page 19 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

3.4. Image Grabbing Functions
There are 4 functions for retrieving fingerprint image from the sensor, each having its advantages and
disadvantages. Here we summarize their differences among the functions, in order to give you
enough information to select the right one to fulfill your task.

Functions ABSGrab and ABSGrabImage are generally device independent, i.e. you don't need to
have exact knowledge about what the device supports or not.

Functions ABSRawGrab and ABSRawGrabImage are device-dependent and allow lower-level tuning
of the image scanning process, including image quality checks and other attributes to be tuned.

Function ABSGrab offers only very limited possibility to choose desired image format, by using or not
using a flag ABS_FLAG_HIGH_RESOLUTION.

Function ABSRawGrab allows specifying the exact desired image format in a form of a record in grab
profile. To use this, you have to know what image formats your device actually really supports. See
documentation for ABS_PKEY_IMAGE_FORMAT constant and ABS_IFMT_xxxx constants for more
details.

Functions ABSGrabImage and ABSRawGrabImage require that you describe the desired image
format in a form of ABS_IMAGE_FORMAT structure. You can get list of supported formats with function
ABSListImageFormats.

Functions ABSGrab and ABSGrabImage ask the user to swipe his finger until the resulted image
passes some internal quality checks, i.e. there is some guaranty that you get image of real fingerprint.

In contrary, functions ABSRawGrab and ABSRawGrabImage return always after the first finger swipe.
It’s the caller’s responsibility to check image quality and (if he desires so) to call the function again.

3.4.1. ABSGrab

ABS_STATUS ABSGrab(
IN ABS_CONNECTION hConnection
IN ABS_OPERATION *pOperation
IN ABS_DWORD dwPurpose
OUT ABS_IMAGE **ppImage
IN ABS_DWORD dwFlags

)

Description Grabs image sample from the FM.

Please note that unless an error occurs or it is canceled with
ABSCancelOperation, the grab operation is automatically
repeated until an image of some minimal quality is provided.

Parameters

hConnection Handle to the connection to FM.

pOperation See description of ABS_OPERATION.

dwPurpose A value indicates a purpose of the biometric data capture.

It can be any ABS_PURPOSE_xxxx constant.

ppImage Functions set the pointer to newly allocated sample image.
Use ABSFree to release the allocated memory.

dwFlags Only flag ABS_FLAG_HIGH_RESOLUTION is supported.

Document Title Here Document Title Here Document Title Here

Page 20 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

Return Value
ABS_STATUS

Result code. ABS_STATUS_OK (0)
means success.

3.4.2. ABSRawGrab

ABS_STATUS ABSRawGrab(
IN ABS_CONNECTION hConnection
IN ABS_OPERATION *pOperation
IN ABS_DWORD dwProfileSize
IN ABS_PROFILE_DATA *pProfileData
OUT ABS_IMAGE **ppImage
OUT ABS_SWIPE_INFO **ppSwipeInfo
IN ABS_DWORD dwFlags

)

Description

Grabs image sample from the FM. This function is similar
to ABSGrab, but it is more low level.

It allows specifying of some special tuning parameters,
thus tuning of the grab operation for specific purposes is
possible. Those flags can specify what quality checks
should be run, desired image format and other options.

Please note that all these options are device specific.
Various device models tune various aspects of the grab
operations, to various degrees. Please prefer ABSGrab or
ABSGrabImage whenever possible.

Unlike ABSGrab this function waits for just one swipe and
ends even if the resulting image has low quality. The caller
can use the output parameters to further inspect quality of
the resulted sample image.

Parameters

hConnection Handle to the connection to FM.

pOperation See description of ABS_OPERATION.

dwProfileSize Determines how many properties are in pProfileData.

pProfileData

Pointer to first member of profile data array.

See description of ABS_PROFILE_DATA type for more
information about the profile.

ppImage

Functions to set the pointer to newly allocated sample
image.

Use ABSFree to release the allocated memory.

ppSwipeInfo

If used (i.e. not set to NULL), an additional information
about the swipe are provided to the caller.

Use ABSFree to release the returned memory block. See
description of ABS_SWIPE_INFO for more information.

Document Title Here Document Title Here Document Title Here

Page 21 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

dwFlags

Bitmask specifying flags, which modify slightly behavior of
the function. Only flag ABS_FLAG_STRICT_PROFILE is
supported.

By default the profile data are respected to the degree
possible i.e. those which are not supported by the device
are silently ignored. In contrast, if flag
ABS_FLAG_STRICT_PROFILE is set, the profile data is
interpreted in a more strict way and the function returns
ABS_STATUS_NOT_SUPPORTED if any specified
requested tuning parameter or its particular value is not
supported.

Please note that requested image format
(ABS_PKEY_IMAGE_FORMAT) is always interpreted in the
strict way, i.e. the caller has to know which image formats
are supported by the FM he uses.

Return Value ABS_STATUS
Result code. ABS_STATUS_OK (0)
means success.

3.4.3. ABSListImageFormats

ABS_STATUS ABSListImageFormats(
IN ABS_CONNECTION hConnection
OUT ABS_DWORD *pdwCount
OUT ABS_IMAGE_FORMAT **ppImageFormatList
IN ABS_DWORD dwFlags

)

Description

Retrieves list of image formats supported by the FM.

Functions ABSGrabImage and ABSRawGrabImage takes
image format in the form of ABS_FORMAT_IMAGE as their
parameter.

Parameters

hConnection Handle to the connection to FM.

pdwCount Count of image formats returned.

ppImageFormatList Newly allocated array of image format structures is stored
into this pointer. Use ABSFree to release the memory.

dwFlags Reserved for future use. Set to zero.

Return value ABS_STATUS Result code. ABS_STATUS_OK (0)
means success.

Document Title Here Document Title Here Document Title Here

Page 22 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

3.4.4. ABSGrabImage

ABS_STATUS ABSGrabImage(
IN ABS_CONNECTION hConnection
IN ABS_OPERATION *pOperation
IN ABS_DWORD dwPurpose
IN ABS_IMAGE_FORMAT *pImageFormat
OUT ABS_IMAGE **ppImage
OUT ABS_SWIPE_INFO **ppSwipeInfo
IN void *pReserved
IN ABS_DWORD dwFlags

)

Description

Grabs image sample from the FM.

Please note that unless an error occurs or it is canceled with
ABSCancelOperation, the grab operation is automatically
repeated until an image of some minimal quality is provided.

Parameters

hConnection Handle to the connection to FM.

pOperation See description of ABS_OPERATION.

dwPurpose
A value indicates a purpose of the biometric data capture.

It can be any ABS_PURPOSE_xxxx constant.

pImageFormat
Pointer to structure describing desired image format.

TODO

ppImage
Functions set the pointer to newly allocated sample image.

Use ABSFree to release the allocated memory.

ppSwipeInfo

If used (i.e. not set to NULL), an additional information about
the swipe is provided to the caller.

Use ABSFree to release the returned memory block. See
description of ABS_SWIPE_INFO for more information.

pReserved Reserved for future use. Set to NULL.

dwFlags Reserved for future use. Set to zero.

Return Value ABS_STATUS
Result code. ABS_STATUS_OK (0)
means success.

Document Title Here Document Title Here Document Title Here

Page 23 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

3.4.5. ABSRawGrabImage

ABS_STATUS ABSRawGrabImage(
IN ABS_CONNECTION hConnection
IN ABS_OPERATION *pOperation
IN ABS_DWORD dwProfileSize
IN ABS_PROFILE_DATA *pProfileData
IN ABS_IMAGE_FORMAT *pImageFormat
OUT ABS_IMAGE **ppImage
OUT ABS_SWIPE_INFO **ppSwipeInfo
IN void *pReserved
IN ABS_DWORD dwFlags

)

Description

Grabs image sample from the FM. This function is similar
to ABSGrabImage, but it is more low level.

It specifies some special tuning parameters, thus tuning of
the grab operation for specific purposes is possible. Those
flags can specify what quality checks should be run and
other options.

Please note that all these options are device specific.
Various device models tunes various aspects of the grab
operations, to various degree. Prefer ABSGrab or
ABSGrabImage whenever possible.

Unlike ABSGrabImage this function waits for just one
swipe and ends even if the resulting image has low
quality. The caller can use the output parameters to
further inspect quality of the resulted sample image.

Note that if the grab profile uses key
ABS_PKEY_IMAGE_FORMAT, it is ignored, as this function
always uses the format as specified by pImageFormat
parameter.

Parameters

hConnection Handle to the connection to FM.

pOperation See description of ABS_OPERATION.

dwProfileSize Determines how many properties are in pProfileData.

pProfileData

Pointer to first member of profile data array.

See description of ABS_PROFILE_DATA type for more
information about the profile.

pImageFormat Pointer to structure describing desired image format.

ppImage

Functions set the pointer to newly allocated sample
image.

Use ABSFree to release the allocated memory.

Document Title Here Document Title Here Document Title Here

Page 24 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

ppSwipeInfo

If used (i.e. not set to NULL), an additional information
about the swipe are provided to the caller.

Use ABSFree to release the returned memory block. See
description of ABS_SWIPE_INFO for more
information.

pReserved Reserved for future use. Set to NULL.

dwFlags Bitmask specifying flags, which modify slightly, the
behavior of the function. Only flag
ABS_FLAG_STRICT_PROFILE is supported.

By default the profile data are respected to the degree
possible i.e. those which are not supported by the device
are silently ignored. In contrast, if flag
ABS_FLAG_STRICT_PROFILE is set, the profile data is
interpreted in a more strict way and the function returns
ABS_STATUS_NOT_SUPPORTED if any specified
requested tuning parameter or its particular value is not
supported.

Please note that requested image format
(ABS_PKEY_IMAGE_FORMAT) is always interpreted in the
strict way, i.e. the caller has to know which image formats
are supported by the FM he uses.

Return Value ABS_STATUS Result code. ABS_STATUS_OK (0)
means success.

Document Title Here Document Title Here Document Title Here

Page 25 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

3.5. Miscellaneous Functions

3.5.1. ABSCancelOperation

ABS_STATUS ABSCancelOperation(
IN ABS_CONNECTION hConnection
IN ABS_DWORD dwOperationID

)

Description
Cancels a running interactive operation. Function of the
canceled operation returns ABS_STATUS_CANCELED.

Parameters

hConnection Handle to the connection to FM.

dwOperationID

ID of the operation to be canceled, or zero to cancel the
currently processed operation in the current thread.

I.e. zero can be used from callback to cancel operation which
called the callback. It is the only way how to cancel
interactive operations which have OperationID set to zero.

See description of member OperationID of structure
ABS_OPERATION for more information.

Return Value ABS_STATUS Result code. ABS_STATUS_OK (0)
means success.

3.5.2. ABSSetAppData

ABS_STATUS ABSSetAppData(
IN ABS_CONNECTION hConnection
IN ABS_DATA *pAppData

)

Description

Stores arbitrary data on the FM.

The data can be later retrieved with function
ABSGetAppData. The data survive across BSAPI sessions,
until the data are overwritten by next call to this function.

Note that maximal length of the data is limited. The limit is
device model dependent.

Parameters

hConnection Handle to the connection to FM.

pAppData The data to be stored on the device.

Return Value ABS_STATUS
Result code. ABS_STATUS_OK (0)
means success.

Document Title Here Document Title Here Document Title Here

Page 26 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

3.5.3. ABSGetAppData

ABS_STATUS ABSGetAppData(
IN ABS_CONNECTION hConnection
OUT ABS_DATA **ppAppData

)

Description
Retrieves the data stored on the FM.

See also description of function SetAppData.

Parameters

hConnection Handle to the connection to FM.

ppAppData

Output parameter, to be set to the newly allocated structure
ABS_DATA.

Use ABSFree to release the allocated memory.

Return Value
ABS_STATUS Result code. ABS_STATUS_OK (0) means

success.

3.5.4. ABSSetSessionParameter

ABS_STATUS ABSSetSessionParameter(
IN ABS_CONNECTION hConnection
IN ABS_DWORD dwParamID
IN ABS_DATA *pParamValue

)

Description

Sets value of session-wide parameter.

These settings influence behavior of certain BSAPI functions
called in context of the current session.

Please note that in the current version all parameters are
global and can be set only with
ABSSetGlobalParameter(). Therefore this functions
returns ABS_STATUS_INVALID_PARAMETER as it does not
support any dwParamID value currently.

Parameters

hConnection Handle to the connection to FM.

dwParamID ID of the parameter to set. See description of
ABS_PARAM_xxxx constants.

pParamValue

Parameter value. Format and meaning of the data is
parameter dependent.

See description of particular ABS_PARAM_xxxx constant,
you use as dwParamID for more information.

Return Value ABS_STATUS
Result code. ABS_STATUS_OK (0) means
success.

Document Title Here Document Title Here Document Title Here

Page 27 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

3.5.5. ABSGetSessionParameter

ABS_STATUS ABSGetSessionParameter(
IN ABS_CONNECTION hConnection
IN ABS_DWORD dwParamID
OUT ABS_DATA **ppParamValue

)

Description

Retrieves value of session-wide parameter.

Please note that in the current version all parameters are
global and can be set only with
ABSSetGlobalParameter(). Therefore this function returns
ABS_STATUS_INVALID_PARAMETER as it does not support
any dwParamID value currently.

Parameters

hConnection Handle to the connection to FM.

dwParamID ID of the parameter to set. See description of
ABS_PARAM_xxxx constants.

pParamValue

Output parameter for the retrieved value. The function sets it
to point to newly allocated ABS_DATA.

Use ABSFree to release the memory.

See description of ABS_PARAM_xxxx constants for meaning
of particular values.

Return Value ABS_STATUS Result code. ABS_STATUS_OK (0)
means success.

3.5.6. ABSSetGlobalParameter

ABS_STATUS ABSSetGlobalParameter(
IN ABS_DWORD dwParamID
IN ABS_DATA *pParamValue

)

Description

Sets value of global-wide parameter.

These settings influence behavior of certain BSAPI functions.
Unlike ABSSetSession- Parameter, the settings apply to all
BSAPI functions called in a context of the process, despite
the current session.

Parameters

dwParamID
ID of the parameter to set.

See description of ABS_PARAM_xxxx constants.

pParamValue

Parameter value. Format and meaning of the data is
parameter dependent.

See description of particular ABS_PARAM_xxx constant, you
use as dwParamID for more information.

Document Title Here Document Title Here Document Title Here

Page 28 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

Return Value ABS_STATUS Result code. ABS_STATUS_OK (0)
means success.

3.5.7. ABSGetGlobalParameter

ABS_STATUS ABSGetGlobalParameter(
IN ABS_DWORD dwParamID
OUT ABS_DATA **ppParamValue

)

Description Retrieves value of global-wide parameter.

Parameters

dwParamID ID of the parameter to retrieve. See description of
ABS_PARAM_xxxx constants.

pParamValue

Output parameter for the retrieved value. The function sets it
to point to newly allocated ABS_DATA.

Use ABSFree to release the memory.

See description of ABS_PARAM_xxxx constants for meaning
of particular values.

Return Value ABS_STATUS Result code. ABS_STATUS_OK (0)
means success.

3.5.8. ABSSetLED

ABS_STATUS ABSSetLED(
IN ABS_CONNECTION hConnection
IN ABS_DWORD dwMode
IN ABS_DWORD dwLED1
IN ABS_DWORD dwLED2

)

Description
This function allows the application to control the state and
behavior of the two user interface LEDs, which can be
optionally connected to the FM.

Parameters

hConnection Handle to the connection to FM.

dwMode

Mode of the LEDs. Different modes define different
behaviors of the LEDs during specific operations,
especially the biometrics.

When set to zero, the LEDs operate in a manual mode.
The manual mode allows the host application to directly
control the state of the LEDs, including setting various
types of blinking.

Other values (and whether they are or are not supported)
are device- dependent.

Document Title Here Document Title Here Document Title Here

Page 29 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

dwLED1

Parameter defining the detailed behavior of the 1st LED.

This parameter is mode-specific.

For the manual mode (dwMode = 0) the value is interpreted
as bit mask with the following meaning:

• Bits 0-15: Blinking pattern. The device iterates over the
bits (one bit in one clock tick as determined by bits 16-19,
see below) and turns the LED on (bit value is 1) or off (bit
value is 0). Bit 0 is displayed first, Bit 1 in the next clock
tick etc.

• Bits 16-19: Blinking clock duration exponent. Value 0
stops the blinking, value 1 = 1 msec per a pattern bit, value
2 = 2 msec per a pattern bit, value 3 = 4 msec per a
pattern bit, … value 15 = 16384 sec per a pattern bit (value
N = 2N-1 msec per a pattern bit).

To switch a LED permanently ON, use a pattern "all ones".
To switch a LED permanently OFF, use a pattern "all
zeros".

dwLED2

Parameter defining the detailed behavior of the 2nd LED.

This parameter is mode-specific.

For the manual mode (dwMode = 0), the meaning is the
same as for dwLED1.

Return Value ABS_STATUS
Result code. ABS_STATUS_OK (0)
means success.

Remarks The default status of LEDs after FM boot is a manual
mode (dwMode = 0), with both LEDs off. When a
connection (session) is closed, the LEDs will keep the last
status they had. If the LEDs were blinking, they will keep
blinking.

The consequence of the previous point is that at the
beginning of a connection, the status of LEDs can vary.
The host application should call ABSGetLED/ABSSetLED
to determine and/or define the LED status.

When FM enters a deep sleep or standby, the LEDs will be
turned off for the duration of sleep. After wakeup the LEDs
will resume the status they had before the sleep (including
the blinking).

3.5.9. ABSGetLED

ABS_STATUS ABSGetLED(
IN ABS_CONNECTION hConnection
OUT ABS_DWORD *dwMode
OUT ABS_DWORD *dwLED1
OUT ABS_DWORD *dwLED2

)

Document Title Here Document Title Here Document Title Here

Page 30 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

Description

This function allows the application to query the state and
behavior of the two user interface LEDs, which can be
optionally connected to the FM.

For more information about the topic, see also
documentation of function ABSSetLED.

Parameters

hConnection Handle to the connection to FM.

dwMode Returns a mode of the LEDs. See description of
ABSSetLED() for more detailed description.

dwLED1

Returns a value defining the detailed behavior of the 1st
LED.

See description of ABSSetLED() for more detailed
description.

dwLED2

Returns a value defining the detailed behavior of the 2nd
LED.

See description of ABSSetLED() for more detailed
description.

Return value ABS_STATUS
Result code. ABS_STATUS_OK (0)
means success.

Remarks

ABSGetLED returns the LED status as set by the latest call
to ABSSetLED.

In the manual mode (dwMode == 0), if the LEDs are
blinking, the returned values do not contain information
about which phase of the bit pattern the LEDs are in.

Document Title Here Document Title Here Document Title Here

Page 31 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

3.5.10. ABSBinarizeSampleImage

ABS_STATUS ABSBinarizeSampleImage(
INOUT ABS_IMAGE *pGrayScaleImage
OUT ABS_IMAGE **ppBinarizedImage

)

Description

The function converts gray-scale image (as obtain from
callback, ABSGrab or ABSRawGrab) to binarized form, with
only two colors.

I.e. the binarized image sample has ColorCount set to 2.
The two colors are then interpreted as black (1) and white
(0). The binarized image is more suitable for displaying to
the end-user because it usually looks better.

Note that the conversion can be taken in-place or to newly
allocated image structure depending if you set the
parameter ppBinarizedImage to NULL or not.

Parameters

pGrayScaleImage

Pointer to the input, gray-scale image structure.

Please note that this function does not support all image
formats. Only formats having 8 bits per pixel
(ABS_IMAGE::ColorCount == 256) and having resolution
381x381 DPI or 508x508 DPI.

If the ppBinarizedImage is NULL, then the content of this
structure is modified in-place.

ppBinarizedImage

Optional output parameter for retrieving the new, binarized
sample image.

If non-NULL, the converted image sample will be placed in
newly allocated buffer pointed by this output parameter.
Caller is then responsible for releasing the memory with
ABSFree.

If NULL, the original image pGrayScaleImage will be
converted in-place.

Return Value ABS_STATUS Result code. ABS_STATUS_OK (0)
means success.

Document Title Here Document Title Here Document Title Here

Page 32 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

3.5.11. ABSGetLastErrorInfo

void ABSGetLastErrorInfo(
OUT ABS_DWORD *pErrorCode
OUT const ABS_CHAR **ppErrorMessage

)

Description

Retrieves additional information about last BSAPI error,
which occurred in the current thread.

Please note that information provided by this function is
not intended to be displayed to the end user. The error
messages are in English (they are never localized) and
they are meant as a hint for developers to make problem
diagnosis easier.

Parameters

pErrorCode

Output parameter set to additional system dependent
error code.

Depending on system it might be error or value returned
byGetLastError on Windows platforms or any other
error code. It might give developer a hint what's going
wrong.

ppErrorMessage

On output this is set to point to a buffer containing zero-
terminated string with textual message.

If no message is provided, it points to empty string so the
caller does not need check it for NULL.

The buffer is managed by BSAPI; do not use ABSFree to
release it.

Note that the buffer is valid only until other BSAPI call is
performed in the same thread. After the next call, the
buffer may be released or reused by BSAPI. If you need to
remember the message, you have to copy it into your own
buffer.

3.5.12. ABSEscape

ABS_STATUS ABSEscape(
IN ABS_DWORD dwOpcode
IN ABS_DATA *pInData
OUT ABS_DATA **ppOutData

)

Description Requests special function to be processed.

Parameters

dwOpcode
Code of operation to perform.

No codes are currently supported. I.e. in this BSAPI
version, calling this function always fails.

Document Title Here Document Title Here Document Title Here

Page 33 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

pInData

Input data, passed to the function requested by
dwOpcode.

Format of the data depends on dwOpcode. Can be NULL if
the dwOpcode does not require any input data.

ppOutData
Data passed back to the caller, as a result of the operation.

Can be set to NULL if no data are passed back.

Return Value ABS_STATUS
Result code. ABS_STATUS_OK (0)
means success.

Document Title Here Document Title Here Document Title Here

Page 34 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

4.0. BSGUI.DLL Functions

4.1. Using BSGUI.DLL
BSGUI.DLL provides a default ABS_CALLBACK implementation for BSAPI.DLL.

To use the default callback implementation, link your application with both BSAPI.DLL and
BSGUI.DLL. Therefore, whenever any interactive operation is started, set member Callback of
structure ABS_OPERATION to pointer to function ABSDefaultCallback from BSGUI.DLL.

When installing the application, file BSGUI.ZIP must be placed to the same directory as the
BSGUI.DLL.

Please note that BSGUI.DLL is available only for Windows platform.

4.2. GUI Customization
The BSGUI.DLL library loads graphics from file BSGUI.ZIP.

If you want to customize look and feel of the dialogs provided by BSGUI.DLL, replace some or all
images in the BSGUI.ZIP file and, if necessary, change also layout in BIO.XML inside the BSGUI.ZIP.

4.3. Default Callback Implementation

4.3.1. ABSDefaultCallback

void ABSDefaultCallback(
IN const ABS_OPERATION *pOperation
IN ABS_DWORD dwMsgID
IN void *pMsgData

)

Description

Default BSAPI callback implementation.

It provides default implementation of callback, which can be passed
into BSAPI interactive functions via ABS_OPERATION structure.
Using this callback instead of your own implementation provides
consistent look and feel across applications.

You should never call this function directly. It's intended only to
pass pointer to the function into the BSAPI functions as member
Callback of structure ABS_OPERATION.

For more information, see the documentation of type
ABS_CALLBACK and structure ABS_OPERATION.

Parameters

pOperation

Pointer to ABS_OPERATION structure used when calling the
interactive biometric operation.

The caller of the interactive operation can use member Context of
the structure to pass data into the default callback.
ABSDefaultCallback expects the data in the form of
ABS_DEFAULT_CALLBACK_CONTEXT structure.

The Context pointer can be set to NULL. In that case, default
behavior is used.

dwMsgID ID of message. See description of ABS_MSG_xxxx constants.

Document Title Here Document Title Here Document Title Here

Page 35 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

pMsgData

Pointer to data with additional information related with the
message.

Its meaning is message-dependent. Refer to documentation of
specific ABS_MSG_xxxx constants.

Document Title Here Document Title Here Document Title Here

Page 36 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

4.4. ABS_DEFAULT_CALLBACK_CONTEXT
Structure to be optionally passed as a context data into ABSDefaultCallback.

This allows tuning of exact behavior of the default callback implementation. To use it, setup the
structure members and set Context of ABS_OPERATION to address of the structure.

The caller of the biometric operation must guarantee that the pointer to the structure, passed in
through ABS_OPERATION structure, remains valid until the biometric operation is over.

typedef struct abs_default_callback_context {
ABS_DWORD Version;
HWND ParentWindow;
ABS_DWORD Flags;

} ABS_DEFAULT_CALLBACK_CONTEXT

Description

Version Version of the structure. Set to 1.

ParentWindow Set to handle of parent window or NULL.

When set to NULL, actually active window is used as the
parent window.

Flags Bitmask of flags. Currently only flag
ABS_DEFAULT_CALLBACK_FLAG_ENABLE_SOUND is
supported.

4.5. Flags for ABS_DEFAULT_CALL BACK_CONTEXT (ABS
Default_CALLBACK_FLAG_xxxx)

The following flag can be used in structure ABS_DEFAULT_CALLBACK_CONTEXT.

ABS_DEFAULT_CALLBACK_FLAG_ENABLE_SOUND 0x1

Enables the callback to play a sound on success.

Document Title Here Document Title Here Document Title Here

Page 37 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

5.0. Declarations

5.1. Basic Types

typedef

Signed integer type (1 byte)
char ABS_CHAR

typedef

Unsigned integer type (1 byte)
unsigned char ABS_BYTE

typedef

Signed integer type (2 bytes)
short ABS_SHORT

typedef

Unsigned integer type (2 bytes)
unsigned short ABS_WORD

typedef

Signed integer type (4 bytes)
int ABS_LONG

typedef

Unsigned integer type (4 bytes)
insigned int ABS_DWORD

typedef

Boolean value (zero, non-zero)
int ABS_BOOL

typedef

Return status
ABS_LONG ABS_STATUS

typedef

Connection handle. It
represents a session with FM.

ABS_DWORD ABS_CONNECTION

5.2. Specific Types

5.2.1. ABS_DATA

The ABS_DATA structure is used to associate any arbitrary long data block with the length
information.

typedef struct abs_data {
ABS_DWORD Length;
ABS_BYTE Data[ABS_VARLEN];

} ABS_DATA

Description

Length Length of the Data field in bytes.

Data[ABS_VARLEN] The data itself, variable length.

Document Title Here Document Title Here Document Title Here

Page 38 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

5.2.2. ABS_BIR_HEADER

This is the header of the BIR. This type is equivalent to BioAPI's structure BioAPI_BIR_HEADER.

In the typical use the BIR is handled as an opaque data, it is not necessary to know the structure of its
header. However, we document it here for completeness. The values provided below are the standard
values used in BIRs produced by the FM.

Please refer to BioAPI documentation for details.

Note that all members of the ABS_BIR_HEADER are always in little-endian byte order. This has two
important impacts:

 The template has exactly same binary representation, when stored to some storage or
database, so they may be used on all platforms despite byte order the platform uses.

 When using values of the structure, you must convert the values to the natural byte order of
the platform you use.

typedef struct abs_bir_header {
ABS_DWORD Length;
ABS_BYTE HeaderVersion;
ABS_BYTE Type;
ABS_WORD FormatOwner;
ABS_WORD FormatID;
ABS_CHAR Quality;
ABS_BYTE Purpose;
ABS_DWORD FactorsMask;

} ABS_BIR_HEADER

Description

Length Length of Header + Opaque Data

HeaderVersion HeaderVersion = 1

Type Type = 4 (BioAPI_BIR_DATA_TYPE_PROCESSED)

FormatOwner FormatOwner = 0x12 (STMicroelectronics)

FormatID FormatID = 0

Quality Quality = -2 (BioAPI_QUALITY is not supported)

Purpose

Purpose (BioAPI_PURPOSE_xxxx,
ABS_PURPOSE_xxxx).

The corresponding BioAPI and BSAPI constants have the
same values.

FactorsMask FactorsMask = 0x08 (BioAPI_FACTOR_FINGERPRINT)

Document Title Here Document Title Here Document Title Here

Page 39 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

5.2.3. ABS_BIR

This is a container for biometric data.

The abbreviation BIR stands for Biometric Identification Record. In BSAPI it represents a fingerprint
template, but potentially can contain other data as well, e.g. audit data. BIR consists of a header, fol-
lowed by the opaque data and optionally by a signature. This type is binary compatible with BioAPI's
BioAPI_BIR. The only difference is that in BioAPI_BIR the data is divided into four separate memory
blocks, while ABS_BIR keeps all the data together.

typedef struct abs_bir {
ABS_BIR_HEADER Header;
ABS_BYTE Data[ABS_VARLEN];

} ABS_BIR

Description

Header BIR header

Data[ABS_VARLEN] The data composing the fingerprint template.

Document Title Here Document Title Here Document Title Here

Page 40 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

5.2.4. ABS_OPERATION

Holds common data used by all interactive operation functions.

typedef struct abs_operation {
ABS_DWORD OperationID;
void* Context;
ABS_CALLBACK Callback;
ABS_LONG Timeout;
ABS_DWORD Flags;

} ABS_OPERATION

Description

OperationID

Unique operation ID or zero.

When set to non-zero, the value identifies the operation. You
can then use the ID to cancel the operation with
ABSCancel-Operation, even from other thread. Please
note that it’s the caller's responsibility to assign the IDs so
that in the context of one session no concurrent interactive
operation (i.e. in other thread) has the same value. Otherwise
the operation fails immediately with
ABS_STATUS_INVALID_PARAMETER.

If set to zero, you can cancel the operation only from its
callback (passing a zero as the parameter for
ABSCancelOperation).

Context
User defined pointer, passed into the operation callback.

BSAPI does not interpret nor dereferences the pointed data
in any way.

Callback

Pointer to application-defined function, implementing
operation callback.

This allows application developers to provide user interface
which informs user how the operation processes and
prompts him to do something, e.g. put his finger on the FM
sensor.

See documentation of ABS_CALLBACK for more detailed
information.

Timeout

Timeout of user's inactivity in milliseconds

If the interactive operation expects some user's activity and
it's not detected for the time specified, the operation is
interrupted and the operation function returns
ABS_STATUS_TIMEOUT.

Value 0 denotes no timeout (user's inactivity does not cause
the operation to be interrupted). Value -1 denotes to use the
default timeout (device dependent).

Flags

Bitmask of flags, tuning the operation process.

See description of constants ABS_OPERATION_FLAG_xxxx
for more information.

Document Title Here Document Title Here Document Title Here

Page 41 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

5.2.5. ABS_PROFILE_DATA

Profile data for tuning raw grab operation (ABSRawGrab).

This allows setting of various special modes and attributes of the raw grab, including various FM
dependent ones.

Function ABSRawGrab takes pointer to array of structure ABS_PROFILE_DATA. (Other parameter
specifies number of items in the profile array.) Each record in the array is composed of key-value pair.

The key specifies what attribute/parameter of the raw grab operation to tune and the value specifies
how to tune that attribute/parameter. Meaning of the value and range of accepted values depends on
the particular key and capabilities of the FM.

typedef struct abs_profile_data {
ABS_DWORD Key;
ABS_DWORD Value;

} ABS_PROFILE_DATA

Description

Key Profile key. It can be any constant ABS_PKEY_xxxx

Value Value, key dependent.

5.2.6. ABS_SWIPE_INFO

This structure provides various information about the swipe, from ABSRawGrab, ABSGrabImage or
ABSRawGrabImage functions.

Please note that in the future version of BSAPI, the ABSRawGrab can return the information about the
swipe in other format defined by this structure. See description of ABSRawGrab and its parameter
ppSwipeInfo for more information.

typedef struct abs_swipe_info {
ABS_DWORD Version;
ABS_WORD Height;
ABS_BYTE ReconstructionScore;
ABS_BYTE ImageScore;
ABS_DWORD MsgID;
ABS_DWORD Flags;
ABS_DWORD BackgroundColor;

} ABS_SWIPE_INFO

Description

Version Version of the structure. Current version is 1.

I.e. if the first four bytes of the returned data is not 1, you
cannot interpret the rest of the other data as structure
SWIPE_INFO.

Height Height of the fingerprint image in pixels.

ReconstructionScore Reconstruction quality score, in range 0 - 100.

The higher the value, the higher the quality of the image
reconstruction.

Document Title Here Document Title Here Document Title Here

Page 42 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

ImageScore Image quality score, in range 0 - 100.

The higher the value, the higher the quality of the resulted
image.

MsgID

Quality feedback message ID.

Depending on the settings of the raw grab profile, various
tests quality checks can be processed during the raw grab
operation. If all the tests pass successfully (or if all of them
are disabled) MsgId is set to
ABS_MSG_PROCESS_SUCCESS.

If any quality check failed, the value is set to the most
important/relevant callback message ID (see constants
ABS_MSG_QUALITY_xxxx).

Flags
Bitmask indicating various aspects of the swipe.

See constants ABS_SWIPE_FLAG_xxxx.

BackgroundColor

Background color in the swiped sample image.

Exact color depends on the sample image the
ABS_SWIPE_INFO is related to. Value of 0 means black
color, value (ABS_IMAGE::ColorCount - 1) means white
color. Other grayscale colors are spread between black
and white.

If the background color could not be determined,
BackgroundColor is set to 0xFFFFFFFF.

5.2.7. ABS_IMAGE_FORMAT

Type ABS_IMAGE_FORMAT describes desired image format for functions ABSGrabImage and AB-
SRawGrabImage.

Use function ABSListImageFormats to retrieve list of available formats.

The resolution is always in DPI (dots per inch). Scan resolution is a resolution of the sensor during the
scan. Image resolution is resolution of the resulted image. They are the same unless the sensor
subsamples the scanned image or when the information about sub sampling is not available for the
given piece of hardware.

typedef struct abs_image_format {
ABS_WORD ScanResolutionH;
ABS_WORD ScanResolutionV;
ABS_WORD ImageResolutionH;
ABS_WORD ImageResolutionV;
ABS_BYTE ScanBitsPerPixel;
ABS_BYTE ImageBitsPerPixel;

} ABS_IMAGE_FORMAT

Description

ScanResolutionH Horizontal scan resolution, in dots per inch (DPI).

ScanResolutionV Vertical scan resolution, in dots per inch (DPI).

ImageResolutionH Horizontal resolution of resulted image, in dots per inch
(DPI).

Document Title Here Document Title Here Document Title Here

Page 43 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

ImageResolutionV Vertical resolution of resulted image, in dots per inch (DPI).

ScanBitsPerPixel Scan bits per pixel.

ImageBitsPerPixel Bits per pixel of resulted image. If this value is N, the
resulted ABS_IMAGE::ColorCount is Nth power of two.

5.2.8. ABS_IMAGE

Type ABS_IMAGE holds data representing one sample image of swiped finger.

Functions ABSCapture, ABSGrab and ABSRawGrab use this structure. Also certain messages sent
to ABS_CALLBACK can have sample image in form of this structure passed as additional data.

typedef struct abs_image {
ABS_DWORD Width;
ABS_DWORD Height;
ABS_DWORD ColorCount;
ABS_DWORD HorizontalDPI;
ABS_DWORD VerticalDPI;
ABS_BYTE ImageData[ABS_VARLEN];

} ABS_IMAGE

Description

Width Width of the image in pixels

Height Height of the image in pixels

ColorCount Maximal color count of the image

HorizontalDPI Horizontal resolution of the image (dots per inch)

VerticalDPI Vertical resolution of the image (dots per inch)

ImageData[ABS_VARLEN]

Color values of all pixels.

ImageData is an array of (Width * Height) bytes. Each
pixel is represented by one byte. First (Width) bytes
represent first row of pixels (from left to right ordering)
and the subsequent row follows one by one without any
gaps.

Value of each byte denotes a grayscale color. Colors are
numbered, 0 meaning black and (colorCount - 1)
meaning white. Other gray colors are linearly spread in
the range between black and white.

Document Title Here Document Title Here Document Title Here

Page 44 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

5.2.9. ABS_PROCESS_DATA

This structure is a container for additional data associated with ABS_MSG_PROCESS_xxxx messages
sent to callback of an interactive operation.

Note that some message ABS_MSG_PROCESS_xxxx use more specific structure, however all are
binary compatible with ABS_PROCESS_DATA i.e. pointer to them can be safely cast to pointer to
ABS_PROCESS_DATA.

typedef struct abs_process_data {
ABS_DWORD ProcessID;

} ABS_PROCESS_DATA

Description

Process ID ID of process stage. See ABS_PROCESS_xxxx constants.

5.2.10. ABS_PROCESS_BEGIN_DATA

This structure is a container for additional data associated with ABS_MSG_PROCESS_BEGIN message
sent to callback of an interactive operation.

typedef struct abs_process_begin_data {
ABS_DWORD ProcessID;
ABS_DWORD Step;
ABS_DWORD StepCount;

} ABS_PROCESS_BEGIN_DATA

Description

Process ID ID of process stage. See ABS_PROCESS_xxxx constants.

Step

Step number.

Some operations are composed of multiple steps, e.g.
consolidated enrollment where user has to swipe multiple
times. First step is always marked with zero.

StepCount
Count of child steps of this process. If the count is not known
(e.g. in the case of dynamic enrollment), then it is set to
zero.

5.2.11. ABS_PROCESS_PROGRESS_DATA

This structure is a container for additional data associated with ABS_MSG_PROCESS_PROGRESS
message sent to callback of an interactive operation.

typedef struct abs_process_progress_data {
ABS_DWORD ProcessID;
ABS_DWORD Percentage;

} ABS_PROCESS_PROGRESS_DATA

Description

Process ID ID of process stage. See ABS_PROCESS_xxxx constants.

Document Title Here Document Title Here Document Title Here

Page 45 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

Percentage
Determines percentage of the process completeness. The
value is in the range 0 - 100. If the percentage is not
applicable to the process, it is set to 0xffffffff.

5.2.12. ABS_PROCESS_SUCCESS_DATA

This structure is a container for additional data associated with ABS_MSG_PROCESS_SUCCESS mes-
sage sent to callback of an interactive operation.

typedef struct abs_process_success_data {
ABS_DWORD ProcessID;
ABS_IMAGE* SampleImage;
ABS_BIR* Template;

} ABS_PROCESS_SUCCESS_DATA

Description

Process ID ID of process stage. See ABS_PROCESS_xxxx constants.

SampleImage
Pointer to scanned image.

Can be NULL if no image is associated with the message.

Template
Pointer to processed template.

Can be NULL if no template is associated with the message.

5.2.13. ABS_NAVIGATION_DATA

This structure is a container for additional data associated with ABS_MSG_NAVIGATE_CHANGE mes-
sage sent to callback of an interactive operation.

typedef struct abs_navigation_data {
ABS_LONG DeltaX;
ABS_LONG DeltaY;
ABS_BOOL FingerPresent;

} ABS_NAVIGATION_DATA

Description

DeltaX Change of the virtual pointer’s coordinates, in the horizontal
direction.

DeltaY Change of the virtual pointer’s coordinates, in the vertical
direction.

FingerPresent ABS_TRUE if finger is present on the sensor, ABS_FALSE
otherwise.

5.2.14. ABS_DEVICE_LIST_ITEM

Item of the device info list

typedef struct abs_device_list_item {
ABS_CHAR DsnSubString[260];
ABS_BYTE reserved[256];

} ABS_DEVICE_LIST_ITEM

Document Title Here Document Title Here Document Title Here

Page 46 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

Description

DsnSubString[260] String usable as part of DSN for ABSOpen to connect to
this device.

Reserved[256] Reserved for future use.

5.2.15. ABS_DEVICE_LIST

The format of the data returned by ABSEnumerateDevices, it contains info about all enumerated
devices. Please note, that the real output parameter from ABSEnumerateDevices has variable
length – array List[] has NumDevices items.

typedef struct abs_device_list {
ABS_DWORD NumDevices;
ABS_DEVICE_LIST_ITEM List[ABS_VARLEN];

} ABS_DEVICE_LIST

Description

NumDevices Number of devices in the list

List[ABS_VARLEN] The list of devices

Document Title Here Document Title Here Document Title Here

Page 47 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

5.2.16. ABS_CALLBACK

void ABS_CALLBACK(

IN const ABS_OPERATION *pOperation
IN ABS_DWORD dwMsgID
IN void *pMsgData

)

Description A type of the callback functions that an application can supply to the
BSAPI to enable itself to display GUI state information to user.

The callback is passed into the BSAPI function of interactive
operations through ABS_OPERATION structure. Interactive
operations call the callback repeatedly while the operation is in
process. Thus the application can react accordingly to the process
stage of the operation and update user interface.

Note that exact way when the callback is called can be further
determined by member Flags of ABS_OPERATION.

Most applications will probably implement a callback in a way that it
will create a dialog when first message of a biometric operation
appears and then update a text and/or image in the dialog,
according to the messages received. For this reason, BSAPI.DLL
delays sending of some messages if there would be danger that the
letter would replace the former too quickly so that end user would
have no chance to catch the message. For example when user
swipes incorrectly, and bad quality of the swipe or of resulted image
is detected, the callback is called with appropriate feedback
message. Then there is some delay before the callback is called
again, with a prompt for new swipe so user has time to see the bad
quality feedback.

However this default behavior might not be desired in some other
scenarios. For example if the callback implementation writes every
message to a new line, so user can review complete history of the
messages, or when the callback implementation provides no
feedback to the user. In these cases the delays between some
subsequent messages only protract time of the biometric operation.
To disable all those delays, set the flag
ABS_OPERATION_FLAG_LL_CALLBACK in
ABS_OPERATION::Flags.

The second supported flag of ABS_OPERATION related to
ABS_CALLBACK is ABS_OPERATION_FLAG_USE_IDLE. When set,
BSAPI.DLL guarantees the callback is called quite often (about 100
milliseconds). If there is nothing it would report, it uses message
ABS_MSG_IDLE. The only purpose of this is to allow the canceling of
the operation from the callback in a reasonable way (see
ABSCancelOperation for more info). However this comes at some
cost: it eats more CPU cycles, so when this is not needed (e.g. you
know that you don't cancel the operation or when you can cancel it
from other thread), you should avoid use of this flag.

When the flag ABS_OPERATION_FLAG_USE_IDLE is not set, the
message ABS_MSG_IDLE is never used and it there might be quite a
long time between two subsequent calls of the callback, e.g. when
the biometric operation has been started but user does not touch the
sensor for long time.

Document Title Here Document Title Here Document Title Here

Page 48 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

Parameters

pOperation

Pointer to ABS_OPERATION structure used when calling the
interactive operation.

The caller of the interactive operation can use member Context of
the structure to pass data into the callback.

dwMsgData ID of message. See description of ABS_MSG_xxxx constants.

pMsgData

Pointer to data with additional information related with the message.

Its meaning is message dependent. Refer to the documentation of
the specific BS_MSG_xxxx constants.

Document Title Here Document Title Here Document Title Here

Page 49 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

6.0. Specific Constants

6.1. Flags for ABSInitializeEx (ABS_INIT_FLAG_xxxx)
The following flags can be used in function ABSInitializeEx.

ABS_INIT_FLAG_NT_SERVICE 0x1

Initializes the library in a mode compatible with Windows NT service.

This mode is supported only on MS Windows. You should use this flag only when your
application is running as NT service.

Note that this flag cannot be used together with
ABS_INIT_FLAG_FORCE_REMOTE_SENSOR. When flag ABS_INIT_FLAG_NT_SERVICE is
used, only local devices can be opened, regardless whether
ABS_INIT_FLAG_FORCE_LOCAL_SENSOR flag is or is not used.

ABS_INIT_FLAG_FORCE_LOCAL_SENSOR 0x2

Forces BSAPI to ignore remote sessions and always open sensors locally.

6.2. Flags for ABS_OPERATION (ABS_OPERATION_FLAG_xxxx)
The following flags can be used in structure ABS_OPERATION.

ABS_OPERATION_FLAG_LL_CALLBACK 0x1

Enables low level callback mode.

See documentation of ABS_CALLBACK for more information how the low level callback
mode differs from the default high level mode.

ABS_OPERATION_FLAG_USE_IDLE 0x2

Enables sending of messages ABS_MSG_IDLE to operation callback.

By default idle messages are not sent. If they are enabled, they are called in short intervals
so you can call ABSCancelOperation effectively from the operation callback.

You should not allow sending the idle messages unless you really need them.

Document Title Here Document Title Here Document Title Here

Page 50 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

6.3. Flags for Biometric and Image Grabbing Functions
(ABS_FLAG_xxxx)

The following flags can be used for biometric functions.

Note that not all functions accept all flags. See documentation of respective function for more informa-
tion.

ABS_FLAG_NOTIFICATION 0x1

Enables notification mode of the biometric operation.

In the notification mode the biometric function does not provide any feedback to user until
the user swipes. This is useful for applications running on background, when it's not desired
to disturb user until he swipes.

Whether the GUI dialog should be visible or not is controlled by messages
ABS_MSG_DLG_SHOW and ABS_MSG_DLG_HIDE.

Only functions ABSCapture and ABSVerify support this flag.

ABS_FLAG_AUTOREPEAT 0x2

Enables auto-repeat mode of the biometric operation.

If used, the verification is automatically restarted when the user's swipe does not match any
template in a provided template set.

Only function ABSVerify supports this flag. See documentation of this function for more
details.

ABS_FLAG_STRICT_PROFILE 0x4

Requires strict interpretation of raw grab profile.

When set and any of the requested profile data cannot be respected because the FM does
not support it, the raw grab operation fails and ANS_STATUS_NOT_SUPPORTED is returned.

When not set the profile is followed only to degree supported by the device. I.e. those not
supported are silently ignored, and the operation continues. Please note that profile key
ABS_PKEY_IMAGE_FORMAT is always interpreted in the strict way.

Only function ABSRawGrab supports this flag.

ABS_FLAG_HIGH_RESOLUTION 0x8

Requires a higher sample image resolution.

Only function ABSGrab supports this flag. Using Function ABSGrab with this flag is a device
alternative to specifying exact desired image format with ABSRawGrab, ABSGrabImage or
ABSRawGrabImage.

With most devices manufactured by UPEK, this means using 508x508 DPI instead of
normal 381x381 used without the flag, if the device supports it.

Document Title Here Document Title Here Document Title Here

Page 51 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

6.4. Template Purpose Constants (ABS_PURPOSE_xxxx)
Possible values used where purpose of fingerprint template (BIR)

Biometric functions which take purpose as one of their parameter can use this information to optimize
operation processing. For example enrollment usually requires a higher template quality, so built-in
biometric tests for template quality are stricter when ABS_PURPOSE_ENROLL is specified.

Please notice that the defined constants correspond to constants defined in BioAPI
(BioAPI_PURPOSE_xxxx). However also note that BSAPI supports uses only subset of the purposes
supported defined in BioAPI.

ABS_PURPOSE_UNDEFINED
0

The purpose is not specified.

The biometric operation is not optimized for any particular BIR purpose.

ABS_PURPOSE_VERIFY
1

BIR is intended to be used for verification.

ABS_PURPOSE_ENROLL
3

BIR is intended to be used for enrollment.

Document Title Here Document Title Here Document Title Here

Page 52 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

6.5. Key Constants for ABS_PROFILE_DATA (ABS_PKEY_xxxx)
Constants ABS_PKEY_xxxx are possible values for member Key of:

ABS_PKEY_WAIT_FOR_ACCEPTABLE 1

Disables default one-attempt approach of ABSRawGrab.

When set to zero (default), ABSRawGrab lets the user swipe only once. If the quality checks
are unsatisfied, and thus no image is retrieved, the function still returns ABS_STATUS_OK,
and NULL is passed through the output parameter ppImage.

When set to non-zero, the grab operation asks for additional swipes until the swipe is good
enough to pass the quality checks.

Note that when quality checks are disabled (i.e. both ABS_PKEY_SCAN_QUALITY_QUERY
and ABS_PKEY_IMAGE_QUALITY_QUERY are set to non-zero), this flag has no effect
because any swipe is then considered as acceptable.

ABS_PKEY_SCAN_QUALITY_QUERY 2

Sets scan quality check mode.

When set to non-zero (default), scanning quality problems are ignored during the swipe and
thus they are not sent to callback. You can still retrieve some information about scan quality
in form of ABS_SWIPE_INFO structure.

When set to zero, scanning quality problems are sent to the call back in form of
ABS_MSG_QUALITY_xxxx messages.

ABS_PKEY_IMAGE_QUALITY_QUERY 3

Sets image quality check mode.

When set to non-zero (default), image quality problems are ignored during the swipe and
thus they are not sent to callback. You can still retrieve some information about scan quality
in form of ABS_SWIPE_INFO structure.

When set to zero, image quality problems are sent to the call back in form of
ABS_MSG_QUALITY_xxxx messages.

ABS_PKEY_ALLOW_HW_SLEEP 4

Enables HW sleep mode.

When set to non-zero (default), HW sleep of the device is enabled during the raw grab
operation.

When set to zero, the sleep is disabled.

Note that SONLY ignores this profile key, even in strict mode because SONLY uses its own,
more complex policy, to decide when to use the sleep mode.

ABS_PKEY_IMAGE_FORMAT 5

Specifies desired image format.

Value can be any ABS_PVAL_IFMT_xxxx constant. Note that various devices support
different image formats. Using unsupported image format causes ABSRawGrab to fail with
ABS_STATUS_NOT_SUPPORTED, regardless whether strict mode is used or not.

Document Title Here Document Title Here Document Title Here

Page 53 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

ABS_PKEY_REC_TERMINATION_POLICY 6

Specifies image reconstruction termination policy.

It can be any ABS_PVAL_RTP_xxxx constant. It determines when the FM stops to scan the
finger.

Default value depends on the FM model used:

• TFM 2.0: ABS_PVAL_RTP_CORE

• ESS 2.1: ABS_PVAL_RTP_CORE

• ESS 2.2: ABS_PVAL_RTP_CORE_PLUS

• SONLY: ABS_PVAL_RTP_CORE_PLUS

• TCD 50: ABS_PVAL_RTP_FINGERTIP

ABS_PKEY_REC_RETUNING 7

Enables automatic sensor retuning.

When set to non-zero (default), an automatic sensor calibration tuning is enabled while
waiting for finger in order to always get the best image.

When set to zero, the calibration tuning is disabled.

ABS_PKEY_REC_DIGITAL_GAIN 8

This value is used for digital image enhancement.

The value determines a factor of digital image enhancement. It is strongly recommended not
to change this parameter.

Supported only by TFM 2.0 and ESS 2.1.

ABS_PKEY_REC_FLAG_DGAIN 9

This value is used for digital image enhancement.

When set to non-zero (default), digital gain enhancement is enabled; when zero, it is
disabled.

Supported only by TCD 50

ABS_PKEY_REC_FLAG_SRA_DOWN 10

Enables top-down striation removal algorithm.

When set to non-zero (default), the algorithm is enabled. When zero, it is disabled.

ABS_PKEY_REC_FLAG_SRA_UP 11

Enables bottom-up striation removal algorithm.

When set to non-zero (default), the algorithm is enabled. When zero, it is disabled.

ABS_PKEY_REC_FLAG_SKEW 12

Enables skew compensation algorithm.

When set to non-zero, the algorithm is enabled. When zero, it is disabled.

Supported only by TCD 50.

Document Title Here Document Title Here Document Title Here

Page 54 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

ABS_PKEY_REC_FLAG_GRADIENT 13

Enables gradient compensation algorithm.

When set to non-zero, the algorithm is enabled. When zero, it is disabled.

Supported only by TCD 50.

ABS_PKEY_REC_SWIPE_DIRECTION 14

Specifies swipe direction mode.

Can be set to any ABS_PVAL_SWIPEDIR_xxxx constant. The default value is
ABS_PVAL_SWIPEDIR_STANDARD. If you set it to any non-default value you should set
ABS_PKEY_SCAN_QUALITY_QUERY to zero as well.

Not supported by TFM 2.0 and ESS 2.1.

ABS_PKEY_REC_NOISE_ROBUSTNESS 15

Specifies noise robustness mode.

Can be set to any ABS_PVAL_NOIR_xxxx constant. Default is
ABS_PVAL_NOIR_DISABLED for SONLY and ABS_PVAL_NOIR_ON_DETECTION for TCD
50.

Supported only by SONLY and TCD 50.

ABS_PKEY_REC_NOISE_ROBUSTNESS_TRIGGER 16

Specifies noise robustness trigger.

It determines how many consecutive bad swipes triggers noise robustness. Zero means no
triggering by bad swipes. Default value is 3.

Supported by TCD 50 only.

ABS_PKEY_REC_SWIPE_TIMEOUT 17

Timeout for swipe termination in milliseconds.

If this timeout expires, image reconstruction is terminated. Still the image reconstructed so
far is passed to next processing which decides about its quality.

Default timeout is 6000 ms.

Not supported by TFM 2.0 and ESS 2.1.

ABS_PKEY_REC_NO_MOVEMENT_TIMEOUT 18

No movement timeout.

If no movement is detected for that period (in milliseconds), the swipe is terminated
regardless on the finger presence. This feature is disabled if set to zero.

Default is 500 ms.

Not supported by TFM 2.0 and ESS 2.1.

ABS_PKEY_REC_NO_MOVEMENT_RESET_TIMEOUT 19

No movement reset timeout.

If no movement is detected for that period (in milliseconds) and image is very short, the
reconstruction is not restarted any more. This feature is disabled if set to zero.

Default is 2000 ms.

Not supported by TFM 2.0 and ESS 2.1.

Document Title Here Document Title Here Document Title Here

Page 55 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

ABS_PKEY_SENSOR_SECURITY_MODE 20

Sensor security mode.

It specifies whether (and how) are encrypted communication data sent between the FM
sensor and chipset or computer which processes them.

It can be set to any ABS_PVAL_SSM_xxxx constant.

For SONLY the default mode is ABS_PVAL_SSM_ENCRYPT (the data are sent from sensor to
the computer), for other FM models (where the data stay in the FM device) the default is
ABS_PVAL_SSM_DISABLED.

Supported only by SONLY and TCD 50.

6.6. ABS_PKEY_IMAGE_FORMAT Values
(ABS_PVAL_IFMT_xxxx)

Possible image formats.

Please note that the desired image format is always evaluated in a strict mode of raw grab profile.

Note that the symbolic constant names contain some marginal parameters of the desired format: hor-
izontal and vertical resolution in dots per inch (DPI), bits per pixel (they determine color count of the
resulted sample image).

Remember that the structure ABS_IMAGE always uses one byte per pixel, regardless of the desired
image format. (The image uses more compact representation during communication between the FM
device and computer.)

Some image format contains word BINARIZED in the symbolic constant name. In this case, the image
is binarized yet on the device (with the exception of SONLY) so that the communication is faster.

Note that support for the particular image format depends on the exact firmware version and whether
the device was calibrated. Especially low-power modes may require calibration. Therefore, the
information in the table below shows what FM models support which format is only for basic
orientation.

ABS_PVAL_IFMT_381_381_8 2

Finger is grabbed with 3:4 sub-sampling (every 4 pixels scaled down to 3 pixels), 381 x 381
DPI, 8 bits/pixel.

Supported by TFM, ESS, SONLY and TCD 50.

ABS_PVAL_IFMT_254_254_8 3

Finger is grabbed with 1:2 sub-sampling (every second pixel), 254 x 254 DPI, 8 bits/pixel.

Supported by TFM and ESS.

ABS_PVAL_IFMT_381_381_8_BINARIZED 4

Finger is grabbed 3:4 sub-sampling (every 4 pixels scaled down to 3 pixels), 381 x 381 DPI,
8 bits/ pixel and binarized to 1 bit/pixel.

Supported by TFM, ESS, SONLY and TCD 50.

ABS_PVAL_IFMT_508_254_8 5

Grab the whole finger with 1:2 sub-sampling in Y axis (508 x 254 DPI), 8 bits per pixel.

Supported by ESS and TCD 50.

Document Title Here Document Title Here Document Title Here

Page 56 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

ABS_PVAL_IFMT_508_508_4 6

Grab the whole finger in full resolution (508 DPI, 8 bits), and cut off to 4 bits per pixel.

Supported by ESS and TCD 50.

ABS_PVAL_IFMT_381_381_4 7

Grab the whole finger with 3:4 sub-sampling (381 x 381 DPI, 8 bits), and cut off to 4 bits per
pixel.

Supported by ESS and TCD 50.

ABS_PVAL_IFMT_508_254_4 8

Grab the whole finger with 1:2 sub-sampling in Y axis (508 x 254 DPI, 8 bits), and cut off to
4 bits per pixel.

Supported by ESS and TCD 50.

ABS_PVAL_IFMT_254_254_4 9

Grab the whole finger with 1:2 sub-sampling (254 x 254 DPI, 8 bits), and cut off to 4 bits per
pixel.

Supported by ESS only.

ABS_PVAL_IFMT_508_508_8_WIDTH208 10

Grabs centered windows of size 208 x 288 pixels, in full resolution of 508 x 508 DPI and 8
bits/pixel.

Supported only by TFM, ESS.

ABS_PVAL_IFMT_508_508_8_COMPRESS1 11

Grab the whole finger in full resolution (508 DPI), 8 bits per pixel. It's recommended to prefer
ABS_PVAL_IFMT_508_508_8_COMPRESS2 whenever supported by the device.

Supported by ESS.

ABS_PVAL_IFMT_508_508_4_SCAN4 12

Grab the whole finger in full resolution (508 DPI) in 4-bit scanning mode. This mode has
lower power consumption but also lower image quality.

Supported only by ESS older than 2.1 rev.K.

ABS_PVAL_IFMT_381_381_8_FAST 13

Grab the whole finger with 3:4 sub-sampling (381 x 381 DPI), 8 bits/pixel. This mode
internally uses the 508 x 254 scanning, which supports faster finger movements at the cost
of lower image quality.

Supported by ESS and TCD 50.

ABS_PVAL_IFMT_508_254_4_SCAN4 14

Grab the whole finger with 1:2 sub-sampling in Y axis (508 x 254 DPI) in 4-bit scanning
mode. This mode has lower power consumption but also lower image quality.

Supported only by ESS older than 2.1 rev.K.

Document Title Here Document Title Here Document Title Here

Page 57 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

ABS_PVAL_IFMT_254_254_4_SCAN4 15

Grab the whole finger with 1:2 sub-sampling (254 x 254 DPI) in 4-bit scanning mode. This
mode has lower power consumption but also lower image quality.

Supported by ESS.

ABS_PVAL_IFMT_381_381_4_FAST 16

Grab the whole finger with 3:4 sub-sampling (381 x 381 DPI, 8 bits), and cut off to 4
bits/pixel. This mode internally uses the 508 x 254 scanning, which supports faster finger
movements at the cost of lower image quality.

Supported by ESS and TCD 50.

ABS_PVAL_IFMT_381_381_8_BINARIZED_FAST 17

Grab the whole finger with 3:4 sub-sampling (381 x 381 DPI, 8 bits), and binarize to 1
bit/pixel. This mode internally uses the 508 x 254 scanning, which supports faster finger
movements at the cost of lower image quality.

Supported by ESS and TCD 50.

ABS_PVAL_IFMT_508_508_8_COMPRESS2 18

Grab the whole finger in full resolution (508 DPI), 8 bits per pixel.

Supported by ESS 2.2.

ABS_PVAL_IFMT_381_381_8_SCAN381 19

Grab the whole finger with 3:4 sub-sampling (every 4 pixels scaled down to 3 pixels, 381 x
381 DPI), 8 bits/pixel. Sub-sampling is done directly by the sensor using its native 381
scanning format.

Supported by ESS 2.2 with TCS3C and newer sensors and by TCD 50.

ABS_PVAL_IFMT_381_381_4_SCAN381 20

Grab the whole finger with 3:4 sub-sampling (381 x 381 DPI, 8 bits), and cut off to 4 bits per
pixel. Sub-sampling is done directly by the sensor using its native 381 scanning format.

Supported by ESS 2.2 with TCS3C and newer sensors and by TCD 50.

ABS_PVAL_IFMT_381_381_8_BINARIZED_SCAN381 21

Grab the whole finger with 3:4 sub-sampling (every 4 pixels scaled down to 3 pixels, 381 x
381 DPI), 8 bits/pixel, and binarize to 1 bit/pixel. Sub-sampling is done directly by the sensor
using its native

381 scanning format.

Supported by ESS 2.2 with TCS3C and newer sensors and by TCD 50.

ABS_PVAL_IFMT_381_381_8_LP 22

Grab the whole finger with 3:4 sub-sampling (every 4 pixels scaled down to 3 pixels, 381 x
381 DPI), 8 bits/pixel, uses low power consumption mode.

Supported by ESS 2.2 and TCD 50.

ABS_PVAL_IFMT_381_381_4_LP 23

Grab the whole finger with 3:4 sub-sampling (381 x 381 DPI, 8 bits), and cut off to 4 bits per
pixel, uses low power consumption mode.

Supported by ESS 2.2 and TCD 50.

Document Title Here Document Title Here Document Title Here

Page 58 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

ABS_PVAL_IFMT_381_381_8_BINARIZED_LP 24

Grab the whole finger with 3:4 sub-sampling (every 4 pixels scaled down to 3 pixels, 381 x
381 DPI), 8 bits/pixel, and binarize to 1 bit/pixel, uses low power consumption mode.

Supported by ESS 2.2 and TCD 50.

ABS_PVAL_IFMT_381_381_8_VLP 25

Grab the whole finger with 3:4 sub-sampling (every 4 pixels scaled down to 3 pixels, 381 x
381 DPI), 8 bits/pixel, uses very low power consumption mode.

Supported by ESS 2.2 with serial communication not faster than 75600 kbps.

ABS_PVAL_IFMT_381_381_4_VLP 26

Grab the whole finger with 3:4 sub-sampling (381 x 381 DPI, 8 bits), and cut off to 4 bits per
pixel, uses very low power consumption mode.

Supported by ESS 2.2 with serial communication not faster than 75600 kbps.

ABS_PVAL_IFMT_381_381_8_BINARIZED_VLP 27

Grab the whole finger with 3:4 sub-sampling (every 4 pixels scaled down to 3 pixels, 381 x
381 DPI), 8 bits/pixel, and binarize to 1 bit/pixel, uses very low power consumption mode.

Supported by ESS 2.2 with serial connection not faster than 57600 kbps.

ABS_PVAL_IFMT_381_381_8_SCAN381_381_4 28

Grab the whole finger with 3:4 sub-sampling (every 4 pixels scaled down to 3 pixels, 381 x
381 DPI), 8 bits/pixel. Image is internally scanned using format 381/381/4.

Supported only by some variants of SONLY.

ABS_PVAL_IFMT_381_381_8_BINARIZED_SCAN381_381_4 30

Grab the whole finger with 3:4 sub-sampling (every 4 pixels scaled down to 3 pixels, 381 x
381 DPI), 8 bits/pixel. Image is internally scanned using format 381/381/4.

Supported only by some variants of SONLY.

ABS_PVAL_IFMT_381_381_8_SCAN381_254_4 31

Grab the whole finger with 3:4 sub-sampling (every 4 pixels scaled down to 3 pixels, 381 x
381 DPI), 8 bits/pixel. Image is internally scanned using format 381/254/4.

Supported only by some variants of SONLY.

ABS_PVAL_IFMT_381_381_8_BINARIZED_SCAN381_254_4 33

Grab the whole finger with 3:4 sub-sampling (every 4 pixels scaled down to 3 pixels, 381 x
381 DPI), 8 bits/pixel, and binarize to 1 bit/pixel. Image is internally scanned using format
381/254/4.

Supported only by some variants of SONLY.

ABS_PVAL_IFMT_508_508_8_SCAN508_508_8 34

Grab the whole finger in full resolution (508 x 508 DPI), 8 bits/pixel. Image is internally
scanned using format 508/508/8.

Supported only by some variants of SONLY.

Document Title Here Document Title Here Document Title Here

Page 59 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

ABS_PVAL_IFMT_508_508_4_SCAN508_508_8 35

Grab the whole finger in full resolution (508 x 508 DPI), 8 bits/pixel, and cut off to 4 bits per
pixel. Image is internally scanned using format 508/508/8.

Supported only by some variants of SONLY and by TCD 50.

ABS_PVAL_IFMT_508_508_8_BINARIZED_SCAN508_508_8 36

Grab the whole finger in full resolution (508 x 508 DPI), 8 bits/pixel, and binarize to 1
bit/pixel. Image is internally scanned using format 508/508/8.

Supported by some variants of SONLY and by TCD 50.

ABS_PVAL_IFMT_508_508_8_COMPRESS3 39

Grab the whole finger in full resolution (508 x 508 DPI), 8 bits/pixel and compress it into 3:4
sub-sampled image (381 x 381 DPI), 8 bits/pixel.

Supported by TCD 50.

ABS_PVAL_IFMT_508_254_8_LP 40

Supported by TCD 50.

ABS_PVAL_IFMT_508_254_4_LP 41

Supported by TCD 50.

ABS_PVAL_IFMT_381_381_8_FAST_LP 42

Supported by TCD 50.

ABS_PVAL_IFMT_381_381_4_FAST_LP 43

Supported by TCD 50.

ABS_PVAL_IFMT_381_381_8_BINARIZED_FAST_LP 44

Supported by TCD 50.

6.7. ABS_PKEY_REC_TERMINATION_POLICY Values
(ABS_PVAL_RTP_xxxx)

See description of ABS_PKEY_REC_TERMINATION_POLICY for more information.

ABS_PVAL_RTP_BASIC 0

Basic image reconstruction termination policy.

If the scanned image would be longer than maximal allowed length, only beginning of the
image from the start on is returned.

ABS_PVAL_RTP_FINGERTIP 1

Fingertip image reconstruction termination policy.

If the scanned image would be longer than maximal allowed length, the end of the image up
to the fingertip is returned.

Document Title Here Document Title Here Document Title Here

Page 60 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

ABS_PVAL_RTP_CORE 2

Core image reconstruction termination policy.

If the scanned image would be longer than maximal allowed length, the most valuable part
of the image from biometrical viewpoint (typically the fingerprint’s core) is returned.

ABS_PVAL_RTP_CORE_PLUS 3

Enhanced core image reconstruction termination policy.

If the scanned image would be longer than maximal allowed length, the most valuable part
of the image from biometrical viewpoint (typically the fingerprint’s core), with finger joint
skipped, is returned.

Not supported by TFM 2.0 and ESS 2.1.

6.8. ABS_PKEY_REC_SWIPE_DIRECTION Values
(ABS_PVAL_SWIPEDIR_xxxx)

See description of ABS_PKEY_REC_SWIPE_DIRECTION for more information.

ABS_PVAL_SWIPEDIR_STANDARD
0

Standard swipe direction.

ABS_PVAL_SWIPEDIR_INVERTED
1

Inverted swipe direction.

ABS_PVAL_SWIPEDIR_AUTODETECT
2

Auto-detection at the beginning of the swipe.

ABS_PVAL_SWIPEDIR_STANDARD_WARN
3

Standard swipe direction with warning.

If backward swipe is detected, message ABS_MSG_QUALITY_BACKWARD is sent to callback.

ABS_PVAL_SWIPEDIR_INVERTED_WARN 4

Inverted swipe direction with warning.

If backward swipe is detected, message ABS_MSG_QUALITY_BACKWARD is sent to callback.

6.9. ABS_PKEY_REC_NOISE_ROBUSTNESS Values
(ABS_PVAL_NOIR_xxxx)

See description of ABS_PKEY_REC_NOISE_ROBUSTNESS for more information.

ABS_PKEY_NOIR_DISABLED 0

Noise robustness is switched off.

ABS_PKEY_NOIR_FORCED 1

Noise robustness is switched on.

Document Title Here Document Title Here Document Title Here

Page 61 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

ABS_PKEY_NOIR_ON_DETECTION 2

Noise robustness is in auto detection mode.

Document Title Here Document Title Here Document Title Here

Page 62 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

6.10. ABS_PKEY_SENSOR_SECURITY_MODE values
(ABS_PVAL_SSM_xxxx)

See description of ABS_PKEY_SENSOR_SECURITY_MODE for more information.

ABS_PVAL_SSM_DISABLED 0

Sensor security mode is disabled.

ABS_PVAL_SSM_ENCRYPT 1

Sensor security is set to 'encryption' mode.

ABS_PVAL_SSM_SIGN_ALL 2

Sensor security is set to 'sign all' mode.

ABS_PVAL_SSM_SIGN_PARTIAL_V1 3

Sensor security is set to 'sign partial ver. 1'.

It is faster than version 2, but less secure.

ABS_PVAL_SSM_SIGN_PARTIAL_V2 4

Sensor security is set to 'sign partial ver. 2'.

It is slower than version 1, but more secure.

Document Title Here Document Title Here Document Title Here

Page 63 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

6.11. Swipe Info Flags (ABS_SWIPE_FLAG_xxxx)
Member Flags of structure ABS_SWIPE_INFO is a bitmask describing various attributes of user's
swipe in ABSRawGrab.

ABS_SWIPE_FLAG_TOO_FAST 0x01

The swipe was too fast.

If user swipes too fast, the device is not able to process all the data.

ABS_SWIPE_FLAG_TOO_SKEWED 0x02

The swipe was too skewed.

ABS_SWIPE_FLAG_BACKWARDS_MOVEMENT 0x04

Swipe was in wrong direction.

Note that this flag is set only in auto-detection mode of the swipe direction (i.e. when profile
value ABS_PKEY_REC_SWIPE_DIRECTION is set to
ABS_PVAL_SWIPEDIR_AUTODETECT).

ABS_SWIPE_FLAG_JOINT_DETECTED 0x08

Finger joint was detected in the swipe.

ABS_SWIPE_FLAG_TOO_SHORT 0x10

The swipe was too short.

It may cause low level quality of resulting biometric templates, because there only few
biometric data in the swiped region of user's finger.

Document Title Here Document Title Here Document Title Here

Page 64 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

6.12. Process Constants (ABS_PROCESS_xxxx)
These constants identify interactive operation processes.

Structures ABS_PROCESS_DATA, ABS_PROCESS_BEGIN_DATA and ABS_PROCESS_SUCCESS_DATA
have member called Process which identifies the stage the operation enters.

Some high level biometric operations consist of multiple processes. Generally the interactive
operation is composed from tree of processes. Entering and leaving in node in the tree is marked with
calling the callback with messages ABS_MSG_PROCESS_BEGIN and ABS_MSG_PROCESS_END.

Other ABS_MSG_PROCESS_xxxx may or may not be sent, depending on the respective process and
its progress.

For example a typical consolidated enrollment operation can be composed from the sequence of the
following messages:

1. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_ENROLL)

2. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_CONSOLIDATED_CAPTURE)

3. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_CAPTURE)

4. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_GRAB)

5. ... messages leading the user to correctly swipe his finger

6. ABS_MSG_PROCESS_END (end of ABS_PROCESS_GRAB)

7. ABS_MSG_PROCESS_PROGRESS (Percentage=23%)

8. ABS_MSG_PROCESS_END (end of ABS_PROCESS_CAPTURE)

9. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_CAPTURE)

10. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_GRAB)

11. ... messages leading the user to correctly swipe his finger

12. ABS_MSG_PROCESS_END (end of ABS_PROCESS_GRAB)

13. ABS_MSG_PROCESS_PROGRESS (Percentage=32%)

14. ABS_MSG_PROCESS_END (end of ABS_PROCESS_CAPTURE)

15. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_CAPTURE)

16. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_GRAB)

17. ... messages leading the user to correctly swipe his finger

18. ABS_MSG_PROCESS_END (end of ABS_PROCESS_GRAB)

19. ABS_MSG_PROCESS_PROGRESS (Percentage=39%)

20. ABS_MSG_PROCESS_END (end of ABS_PROCESS_CAPTURE)

21. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_CAPTURE)

22. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_GRAB)

23. ... messages leading the user to correctly swipe his finger

24. ABS_MSG_PROCESS_END (end of ABS_PROCESS_GRAB)

25. ABS_MSG_PROCESS_PROGRESS (Percentage=64%)

26. ABS_MSG_PROCESS_END (end of ABS_PROCESS_CAPTURE)

27. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_CAPTURE)

28. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_GRAB)

Document Title Here Document Title Here Document Title Here

Page 65 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

29. ... messages leading the user to correctly swipe his finger

30. ABS_MSG_PROCESS_END (end of ABS_PROCESS_GRAB)

31. ABS_MSG_PROCESS_PROGRESS (Percentage=88%)

32. ABS_MSG_PROCESS_END (end of ABS_PROCESS_CAPTURE)

33. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_CAPTURE)

34. ABS_MSG_PROCESS_BEGIN (ProcessID = ABS_PROCESS_GRAB)

35. ... messages leading the user to correctly swipe his finger

36. ABS_MSG_PROCESS_END (end of ABS_PROCESS_GRAB)

37. ABS_MSG_PROCESS_PROGRESS (Percentage=100%)

38. ABS_MSG_PROCESS_END (end of ABS_PROCESS_CAPTURE)

39. ABS_MSG_PROCESS_END (end of ABS_PROCESS_CONSOLIDATED_CAPTURE)

40. ABS_MSG_PROCESS_END (end of ABS_PROCESS_ENROLL)

ABS_PROCESS_NAVIGATE 1

Root process of navigation (ABSNavigate).

It typically consists of one sub-process of type ABS_PROCESS_CONSOLIDATED_CAPTURE.

ABS_PROCESS_ENROLL 2

Root process of enrollment (ABSEnroll).

It is typically composed of one sub-process ABS_PROCESS_CONSOLIDATED_CAPTURE.

ABS_PROCESS_VERIFY 3

Root process of verification (ABSVerify)

It has typically one sub-process of type ABS_PROCESS_CAPTURE.

ABS_PROCESS_IDENTIFY 4

Root process of identification.

ABS_PROCESS_CONSOLIDATED_CAPTURE 5

Process of consolidated template from the scanner.

It is a complex process, consisted of several sub-processes of ABS_PROCESS_CAPTURE
and one final ABS_PROCESS_CONSOLIDATE.

ABS_PROCESS_CONSOLIDATE 6

Process of consolidation.

It merges several templates of one finger into one high-quality enrollment template.

Note that since BSAPI 3.5 this process is never used and the constant remains to be
defined solely for backward compatibility, as source code of custom ABS_CALLBACK
implementations could refer the constant.

ABS_PROCESS_CAPTURE 7

Process of template capture from scanner.

Typically it has one sub-process of type ABS_PROCESS_GRAB.

Document Title Here Document Title Here Document Title Here

Page 66 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

ABS_PROCESS_MATCH 8

Process of matching template against set of templates.

ABS_PROCESS_GRAB 9

Process of sample image grab from scanner.

It's relatively low level process retrieving a fingerprint sample image from the sensor.

ABS_PROCESS_NOTIFY 10

Process of notification.

This process is used by functions which allow notification mode (see
ABS_FLAGF_NOTIFICATION).

Document Title Here Document Title Here Document Title Here

Page 67 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

6.13. Device Property Constants (ABS_DEVPROP_xxxx)
The following constants are suitable as values for dwPropertyId parameter:

ABS_DEVPROP_DEVICE_VERSION 0

Identifies version of the FM device ROM.

Output ABS_DATA contains 4 bytes, interpreted as ABS_DWORD. Highest byte specifies
major version, second highest byte specifies minor version and low word specifies
subversions/revisions.

• 0x0200xxxx (2.0.x) - used by TFM 2.0

• 0x0401xxxx (4.1.x) - used by ESS 2.1

• 0x0402xxxx (4.2.x) - used by ESS 2.2

• 0x0500xxxx (5.0.x) - used by TCD 50

ABS_DEVPROP_DEVICE_ID 1

Unique identification of the device if the FM supports it.

ABS_DATA can contain arbitrary sequence of bytes, composing the identification. If not
supported by FM, no output ABS_DATA are allocated and NULL is passed out.

ABS_DEVPROP_FIRMWARE_VARIANT 2

Identifies firmware variant.

Output ABS_DATA contains 4 bytes, interpreted as ABS_DWORD.

ABS_DEVPROP_SENSOR_TYPE 4

Identifies sensor type.

Output ABS_DATA contains 4 bytes, interpreted as ABS_DWORD.

ABS_DEVPROP_FUNCTIONALITY 8

Provides information about FM capabilities.

Output ABS_DATA contains 4 bytes, interpreted as bitmask.

Bit 15 determines if the FM is SONLY (bit is set) or not (unset).

ABS_DEVPROP_DSN_STRING 11

Provides DSN of the device.

Output ABS_DATA contains any number of bytes, last of them is always zero. Interpret them
as zero-terminated C string. It can be used as DSN string for functions ABSOpen and
ABSEnumerateDevices.

ABS_DEVPROP_GUID 12

Gets GUID of the device.

Output ABS_DATA contains a binary GUID stored on the device. The GUID is generated on
first device boot or during loading firmware into NVM (depending on device type).

Note that only ESS 2.2 and newer devices support this feature.

Document Title Here Document Title Here Document Title Here

Page 68 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

6.14. Session and Global Parameter Constants
(ABS_PARAM_xxxx)

These constants identify each parameter and can be used as value of parameter dwParamID of
ABS-SetSessionParameter and ABSGetSessionParameter (for session parameters) functions,
or ABSSet-GlobalParameter and ABSGetGlobalParameter (for global parameters).

ABS_PARAM_CONSOLIDATION_COUNT 1

Specifies count of finger swipes for consolidation.

Consolidation is a process used for merging information acquired from multiple fingerprint
templates to one high-quality template, used in enrollment process. This parameter
determines how many templates are consolidated into one enrollment template.

When set to zero, dynamic enrollment is used. In this mode, the enrollment operation
continues until the resulted enrollment template has some minimal threshold quality.

The Value is represented as ABS_DATA with 1 byte of length. This byte is interpreted as
unsigned count of finger swipes.

Default value is zero (i.e. the dynamic enrollment). Note that currently only values 0
(dynamic enrollment) and 5 are supported.

ABS_PARAM_CONSOLIDATION_TYPE 2

Determines type of consolidation.

I.e. how multiple templates were mixed together to get one high-quality template. See
description of parameter ABS_PARAM_CONSOLIDATION_COUNT as well.

Value is represented as ABS_DATA with 1 byte of length. The value can be any constant
ABS_CONSOLIDATION_xxxx. See description of those constants.

ABS_PARAM_MATCH_LEVEL 3

Determines required level of security for comparing two templates with ABSVerifyMatch.

Value is represented as ABS_DATA with 1 byte of length. For the list of supported values,
see ABS_MATCH_xxxx.

ABS_PARAM_DISABLE_SENSOR_SLEEP 4

Disables sensor sleeping.

Value is represented as ABS_DATA with 1 byte of length. When zero, BSAPI can switch the
device to sleep mode, to save power. When non-zero, the sleep mode is disabled.

ABS_PARAM_DISABLE_SELECTIVE_SUSPEND 5

Allows to disable the selective suspend.

Value is represented as ABS_DATA with 1 byte of length. When zero, the selective suspend
can be used. When non-zero, the selective suspend is disabled.

ABS_PARAM_POWER_SAVE_MODE 6

Sets default power safe mode, if it is not disabled completely with
ABS_PARAM_DISABLE_SENSOR_SLEEP.

Value is represented as ABS_DATA with 1 byte of length. Possible values are: 0 – power
save is always off (high power consumption); 1 – power save is always on (minimal power
consumption, higher time latencies can occur); 2 – power save switching depending on the
user activity.

Document Title Here Document Title Here Document Title Here

Page 69 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

ABS_PARAM_POWER_SAVE_TIMEOUT 7

Determines for how long time the user is considered to be active after touching sensor, or
using keyboard or mouse.

It has effect to power management only if ABS_PARAM_POWER_SAVE_MODE is set to 2.

Value is represented as ABS_DATA with 4 bytes of length. The value is interpreted as
ABS_DWORD, determining number of seconds.

See also ABS_PARAM_POWER_SAVE_CHECK_KEYBOARD.

ABS_PARAM_ANTISPOOFING_POLICY 8

Value is represented as ABS_DATA with 1 byte of length.

For the list of supported values, see ABS_ANTISPOOFING_xxxx.

ABS_PARAM_ANTISPOOFING_LEVEL 9

If anti-spoofing algorithms are applied, this setting determines trade-off between security
and user's convenience.

Value is represented as ABS_DATA with 1 byte of length. Possible values are: 0 -
convenience is preferred (default); 1 – security is preferred.

ABS_PARAM_OPEN_TOTAL_TIMEOUT 10

Total open-session timeout.

When some specific error occurs with device (e.g. communication error caused by ESD),
BSAPI automatically attempts to restore communication session with the device. This
parameter specifies maximal amount of time BSAPI attempts to reopen the session.

Value is represented as ABS_DATA with 4 bytes of length. The value is interpreted as
ABS_DWORD, determining number of milliseconds. Default value is 5000.

ABS_PARAM_OPEN_RETRY_UI_NOTIFY_TIMEOUT 11

Timeout to user-interface notification about the reopen attempt.

When BSAPI is attempting to reopen session for time longer than this parameter specifies,
then callback of an interactive operation receives message
ABS_MSG_PROCESS_PROGRESS, so the end-user is notified that the device is busy.

Value is represented as ABS_DATA with 4 bytes of length. The value is interpreted as
ABS_DWORD, determining number of milliseconds. Default value is 2000.

ABS_PARAM_OPEN_RETRY_DELAY 12

Delays between two subsequent sessions reopen attempts.

BSAPI attempts to reopen the session repeatedly until it succeeds or until
ABS_PARAM_OPEN_TOTAL_TIMEOUT expires. This parameter then specifies delay between
two subsequent reopen attempts.

The value is represented as ABS_DATA with 4 bytes of length. The value is interpreted as
ABS_DWORD, determining number of milliseconds. Default value is 500.

Document Title Here Document Title Here Document Title Here

Page 70 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

ABS_PARAM_IFACE_VERSION 13

Read-only global parameter which determines version of BSAPI interface.

Value is represented as ABS_DATA with 1 byte of length. This version of BSAPI uses
version 2 of the interface.

Note that corresponding versions of BSAPI.DLL always get the same value of this
parameter.

ABS_PARAM_POWER_SAVE_CHECK_KEYBOARD 14

This global parameter determines if keyboard and mouse are treated as a user activity.

Value is represented as ABS_DATA with 4 bytes of length. Zero means the keyboard and
mouse actions are not treated as a user activity, so only touching the sensor has impact to
power management. Non-zero means the keyboard and mouse are considered a user
activity.

On Windows, the default value is 1 unless BSAPI is running in NT service compatible mode
i.e. unless it is initialized with function ABSInitializeEx with flag
ABS_INIT_FLAG_NT_SERVICE set. If BSAPI is in NT service compatible mode, the default
value is zero.

Note that on Windows and when the parameter is set to 1, the user activity is detected only
in a context of active user's session. If the process does not run in active user's session,
user actions on keyboard and mouse are not detected.

On other systems, default value is zero and setting the value is not supported.

See also ABS_PARAM_POWER_SAVE_MODE and ABS_PARAM_POWER_SAVE_TIMEOUT.

ABS_PARAM_LATENT_CHECK 16

This global parameter determines whether anti-latent checks are performed implicitly.

Value is represented as ABS_DATA with 1 byte of length. If set to 0, the anti-latent checks
are disabled, when 1 (default) the checks are enabled, so any call to ABSEnroll or
ABSVerify implicitly checks for latent fingerprints on area sensors.

After calling another functions (e.g. ABSGrab or ABSCapture), it's up on application to do
the check manually with function ABSCheckLatent if it desires to do so.

See chapter 3.1.5 for more information about anti-latent technology.

Document Title Here Document Title Here Document Title Here

Page 71 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

6.15. Parameter ABS_PARAM_CONSOLIDATION_TYPE Values
(ABS_CONSOLIDATION_xxxx)

These constants are intended as possible values of parameter:

ABS_CONSOLIDATION_NORMAL 0

Normal consolidation algorithm is used.

Enrollment template is constructed either from a subset of collected templates, or it uses
one (the best) of provided templates. A built-in heuristic makes the decision which one of the
approaches is used.

ABS_CONSOLIDATION_CONVENIENT 1

Convenient consolidation algorithm is used.

Similar to ABS_CONSOLIDATION_NORMAL policy with relaxed criteria for image/template
acceptance for entering the enrollment process.

ABS_CONSOLIDATION_STRICT 2

Strict consolidation algorithm is used.

Similar to ABS_CONSOLIDATION_NORMAL policy, except that all collected templates must
match each other (i.e. the same finger has to be used for all acquisitions).

6.16. Parameter ABS_PARAM_MATCH_LEVEL Values
(ABS_MATCH_xxxx)

These constants are intended as possible values of parameter:

ABS_MATCH_MIN_SECURITY 1

Minimal security setting.

ABS_MATCH_LOWER_SECURITY 2

Lower security setting.

ABS_MATCH_MEDIUM_SECURITY 3

Medium security setting.

ABS_MATCH_HIGHER_SECURITY 4

Higher security setting.

ABS_MATCH_MAX_SECURITY 5

Maximal security setting.

Document Title Here Document Title Here Document Title Here

Page 72 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

6.17. Parameter ABS_PARAM_ANTISPOOFING_POLICY Values
(ABS_ANTISPOOFING_xxxx)

These constants are intended as possible values of parameter:

ABS_ANTISPOOFING_DISABLED 0

Anti-spoofing checks are explicitly turned off on the fingerprint sensor. This is default value.

ABS_ANTISPOOFING_AUTODETECT 1

Anti-spoofing checks are explicitly turned ‘ON’ on the fingerprint sensor if the device
supports it.

ABS_ANTISPOOFING_DEVICE_DEFAULT 2

Anti-spoofing settings are not touched in any way so default settings (device dependent) are
used.

6.18. Callback Message Codes (ABS_MSG_xxxx)
These codes are used as values for dwMsgID parameter of ABS_CALLBACK.

Callback function can react on various messages accordingly, usually showing/updating a dialog with
some message. Also the specific ABS_MSG_xxxx values determine the meaning of the pMsgData
parameter of the callback.

There are several categories of the messages:

 Process messages (ABS_MSG_PROCESS_xxxx). These determine lifecycle of the complete
interactive operation. Each process is demarcated by ABS_MSG_PROCESS_BEGIN and
ABS_MSG_PROCESS_END. Between the two some other messages (including nested sub-
process) can arrive. See description of ABS_PROCESS_xxxx constants for more information
about the operation lifecycle.

 Prompting messages (ABS_MSG_PROMPT_xxxx). The callback is expected to prompt user to
do some action with the FM sensor, e.g. scan his finger, or left the finger from the sensor.

 Quality feedback messages (ABS_MSG_QUALITY_xxxx). These inform the user that his
interaction with the sensor has low quality. Depending on the nature of the interactive
operation, this can lead to repeating the process, so that the user is prompted to do the action
again.

 Navigation messages (ABS_NAVIGATE_xxxx). These are called only during navigation (see
ABSNavigate).

The following table lists all supported message codes.

ABS_MSG_PROCESS_BEGIN 0x11000000

New process stage of the interactive operation begun.

Together with ABS_MSG_PROCESS_END, these messages define the interactive operation
lifecycle skeleton.

pMsgData points to additional data stored in structure ABS_PROCESS_BEGIN_DATA.

Document Title Here Document Title Here Document Title Here

Page 73 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

ABS_MSG_PROCESS_END 0x12000000

Process stage of the interactive operation ended.

Together with ABS_MSG_PROCESS_BEGIN, these messages define the interactive operation
lifecycle skeleton. See description of ABS_PROCESS_xxxx constants for more information
about the operation lifecycle.

pMsgData points to additional data stored in structure ABS_PROCESS_DATA.

ABS_MSG_PROCESS_SUSPEND 0x13000000

Execution of the interactive operation has been suspended.

It happens when some other operation (with the same or higher priority) acquires the sensor.
After this interrupting operation finishes, the process is resumed again.

pMsgData points to additional data stored in structure ABS_PROCESS_DATA.

ABS_MSG_PROCESS_RESUME 0x14000000

The interactive operation has been resumed.

pMsgData points to additional data stored in structure ABS_PROCESS_PROGESS_DATA.

ABS_MSG_PROCESS_PROGRESS 0x15000000

Informs that the operation is in progress.

pMsgData points to additional data stored in structure ABS_PROCESS_DATA.

ABS_MSG_PROCESS_SUCCESS 0x16000000

Informs that the process has succeeded.

If it comes it is last message before ABS_MSG_PROCESS_END. Depending on the particular
process nature it can use ABS_MSG_PROCESS_SUCCESS or ABS_MSG_PROCESS_FAILURE
before ABS_MSG_PROCESS_END, but some other processes do not call any of the two.

pMsgData points to additional data stored in structure ABS_PROCESS_SUCCESS_DATA.

ABS_MSG_PROCESS_FAILURE 0x17000000

Informs that the operation has failed.

If it comes it is last message before ABS_MSG_PROCESS_END. Depending on the particular
process nature it can use ABS_MSG_PROCESS_SUCCESS or ABS_MSG_PROCESS_FAILURE
before ABS_MSG_PROCESS_END, but some other processes do not call any of the two.

pMsgData points to additional data stored in structure ABS_PROCESS_DATA.

ABS_MSG_PROMPT_SCAN 0x21000000

Callback should prompt the user to swipe his finger.

pMsgData is always NULL.

ABS_MSG_PROMPT_TOUCH 0x22000000

Callback should prompt user to touch the sensor.

pMsgData is always NULL.

ABS_MSG_PROMPT_KEEP 0x23000000

Callback should prompt user to keep the finger on the sensor.

pMsgData is always NULL.

Document Title Here Document Title Here Document Title Here

Page 74 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

ABS_MSG_PROMPT_LIFT 0x24000000

Callback should prompt the user to lift his finger from the sensor.

pMsgData is always NULL.

ABS_MSG_PROMPT_CLEAN 0x25000000

Callback should prompt the user to clean the sensor.

pMsgData is always NULL.

ABS_MSG_QUALITY 0x30000000

Swipe quality is low.

Note that if possible BSAPI sends more specific ABS_MSG_QUALITY_xxxx messages; this
message is sent only when no more specific message is appropriate.

pMsgData is always NULL.

ABS_MSG_QUALITY_CENTER_HARDER 0x31000000

Swipe quality is low. User should center his finger on the sensor and press harder.

pMsgData is always NULL.

ABS_MSG_QUALITY_CENTER 0x31100000

Swipe quality is low. User should center his finger on the sensor.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_LEFT 0x31110000

Swipe quality is low. The swipe is too left.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_RIGHT 0x31120000

Swipe quality is low. The swipe is too right.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_HIGH 0x31130000

Swipe quality is low. The swipe is too high.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_LOW 0x31140000

Swipe quality is low. The swipe is too low.

pMsgData is always NULL.

ABS_MSG_QUALITY_HARDER 0x31200000

User should press harder.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_LIGHT 0x31210000

Swipe quality is low. The swipe is too light.

pMsgData is always NULL.

Document Title Here Document Title Here Document Title Here

Page 75 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

ABS_MSG_QUALITY_TOO_DRY 0x31220000

Swipe quality is low. The swipe is too dry.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_SMALL 0x31230000

Swipe quality is low. The swipe is too small.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_SHORT 0x32000000

Swipe quality is low. The swipe is too short.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_FAST 0x33000000

Swipe quality is low. The swipe is too fast.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_SKEWED 0x34000000

Swipe quality is low. The swipe is too skewed.

pMsgData is always NULL.

ABS_MSG_QUALITY_TOO_DARK 0x35000000

Swipe quality is low. The swipe is too dark.

pMsgData is always NULL.

ABS_MSG_QUALITY_BACKWARD 0x36000000

Swipe quality is low. The swipe is moved backward.

pMsgData is always NULL.

ABS_MSG_QUALITY_BACKWARD 0x36000000

Swipe quality is low. The swipe is moved backward.

pMsgData is always NULL.

ABS_MSG_QUALITY_JOINT 0x37000000

Swipe quality is low. Joint has been detected.

pMsgData is always NULL.

ABS_MSG_NAVIGATE_CHANGE 0x41000000

Notifies about navigation change (user has moved his finger, touched the sensor of left the
finger). Applies only during navigation operation.

pMsgData points to ABS_NAVIGATION_DATA structure.

ABS_MSG_NAVIGATE_CLICK 0x42000000

Notifies that the user clicked on sensor by his finger. Applies only during navigation operation.

pMsgData is always NULL.

Document Title Here Document Title Here Document Title Here

Page 76 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

ABS_MSG_DLG_SHOW 0x51000000

Notifies that the feedback dialog should be shown.

pMsgData is always NULL.

ABS_MSG_DLG_HIDE 0x52000000

Notifies that the feedback dialog should be hidden.

pMsgData is always NULL.

ABS_MSG_IDLE 0x0

Special message, which gives the callback a chance to cancel the interactive operation.
pMsgData is always NULL.

Note that this message is used only when flag ABS_OPERATION_FLAG_USE_IDLE was
specified in structure ABS_OPERATION.

This allows canceling the interactive operation even in single-threaded applications.

Document Title Here Document Title Here Document Title Here

Page 77 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

7.0. List of Defined Result Codes
The following result codes can be returned as the PT_STATUS values.

Success returns status.
ABS_STATUS_OK (0)

General, unknown, or unspecified error.
ABS_STATUS_GENERAL_ERROR (-5001)

Internal error.
ABS_STATUS_INTERNAL_ERROR (-5002)

BSAPI has been already initialized.
ABS_STATUS_ALREADY_INITIALIZED (-5003)

BSAPI is not initialized.
ABS_STATUS_NOT_INITIALIZED (-5004)

Connection is already opened.
ABS_STATUS_ALREADY_OPENED (-5005)

Invalid parameter.
ABS_STATUS_INVALID_PARAMETER (-5006)

Invalid (connection) handle.
ABS_STATUS_INVALID_HANDLE (-5007)

No such device found.
ABS_STATUS_NO_SUCH_DEVICE (-5008)

Operation has been interrupted due timeout.
ABS_STATUS_TIMEOUT (-5009)

Requested feature/function not implemented.
ABS_STATUS_NOT_IMPLEMENTED (-5010)

Requested feature/function not supported.
ABS_STATUS_NOT_SUPPORTED (-5011)

The operation has been canceled.
ABS_STATUS_CANCELED (-5012)

The operation has not been found (invalid operation ID or the operation already finished).
ABS_STATUS_NO_SUCH_OPERATION (-5013)

Document Title Here Document Title Here Document Title Here

Page 78 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

8.0. New Features in Version 3.5

8.1. Global Parameter ABS_PARAM_IFACE_VERSION
New global parameter ABS_PARAM_IFACE_VERSION was added, which allows the caller to detect
the interface of the BSAPI because version 3.5 of BSAPI brings one incompatibility with previous
version: dynamic enrollment (see below).

The old interface (which does not support this parameter) is version 1. Current version is 2. Future
versions of BSAPI will use higher numbers if they will introduce new incompatibilities.

To distinguish between version 1 and 2 of the interface programmatically, call ABSGetGlob-
alParameter() with dwParam set to ABS_PARAM_IFACE_VERSION. If the return value is
ABS_STATUS_NOT_SUPPORTED, it's interface version 1. If ABS_STATUS_OK is returned, interpret the
returned output parameter to determine number of the interface.

Note that this parameter is designed to be read-only. I.e. you can only get its value with
ABSGetGlobalParameter(). Attempting to use it in ABSSetGlboalParameter() will fail with
ABS_STATUS_NOT_SUPPORTED.

8.2. Dynamic Enrollment
Since version 3.5 BSAPI.DLL uses a dynamic enrollment. This means that there is no a priori known
count how many swipes are required to enroll a finger. During the enrollment process the resulted
fingerprint template is actualized and analyzed after each finger scan, and the process finishes when
BSAPI evaluates quality of the fingerprint template as sufficient.

This change required several changes in the API.

8.2.1. Global Parameter ABS_PARAM_CONSOLIDATION_COUNT

This global parameter was already present in older version of BSAPI however set of supported values
have changed. Old version supported 3 and 5 swipes mostly on all devices. Currently only values 0
(default, meaning the dynamic enrollment) and 5 are supported.

Value 3 is not longer supported since version 3.5.

8.2.2. Structure ABS_PROCESS_BEGIN_DATA

Message ABS_MSG_PROCESS_BEGIN has attached some information, pointed by last parameter sent
to ABS_CALLBACK function. The data are described by ABS_PROCESS_BEGIN_DATA.

Now the member StepCount can be set to zero if count of steps is not known, e.g. as in case of
dynamic enrollment.

8.2.3. Structure ABS_PROCESS_PROGRESS_DATA

Message ABS_MSG_PROCESS_PROGRESS now comes with more data. Previously it was accom-
panied with ABS_PROCESS_DATA, now ABS_PROCESS_PROGRESS_DATA is sent.

Note that ABS_PROCESS_PROGRESS_DATA is binary compatible with ABS_PROCESS_DATA.
ABS_PROCESS_PROGRESS_DATA is superset of ABS_PROCESS_DATA. Beside the old ProcessID
member, ABS_PROCESS_PROGRESS_DATA has member Percentage which informs the caller how the
operation progresses.

The process (e.g. the dynamic enrollment) ends when the Percentage reaches 100. For processes
where the Percentage is not applicable, it's set to 0xFFFFFFFF.

8.2.4. Constant ABS_PROCESS_CONSOLIDATE

The enrollment process has been changed and the separate finger templates are consolidated into
the resulted enrollment template gradually so the consolidation is not single step of the enrollment

Document Title Here Document Title Here Document Title Here

Page 79 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

process.

Member ProcessID in structures ABS_PROCESS_DATA, ABS_PROCESS_BEGIN_DATA,
ABS_PROCESS_PROGRESS_DATA and ABS_PROCESS_SUCCESS_DATA is never set to the value. The
constant is kept in bstypes.h header for backward compatibility of application source codes which
might use it.

8.3. Image Grabbing Functions

8.3.1. Constant ABS_FLAG_HIGH_RESOLUTION

Function ABSGrab accepts new flag ABS_FLAG_HIGH_RESOLUTION, which asks the function to use
the highest available image resolution.

8.3.2. Structure ABS_IMAGE

Structure ABS_SAMPLE_IMAGE was renamed to ABS_IMAGE. ABS_SAMPLE_IMAGE is kept as
typedefed alias of ABS_IMAGE for backward compatibility.

8.3.3. New Grabbing Functions

Three new brand image grabbing functions are added in BSAPI.DLL version 3.5:
ABSListImageFormats, ABSGrabImage and ABSRawGrabImage. All these use new structure
ABS_IMAGE_FORMAT to identify supported and desired image formats.

8.4. Global Parameter
ABS_PARAM_POWER_SAVE_CHECK_KEYBOARD

New global parameter ABS_PARAM_POWER_SAVE_CHECK_KEYBOARD was added, which allows
tuning of power management into more details.

8.5. Internal Template Format Types
Please note this article refers only to the data of the template itself, i.e. the member Data of ABS_BIR
structure. All internal template types are always preceded by ABS_BIR_HEADER when returned from
BSAPI, and also the ABS_BOR_HEADER preceding the data is expected on input.

In general UPEK uses several template format types:

 legacy template,

 alpha template,

 beta template,

 alpha multi-template.

The internal format of the fingerprint templates returned from the BSAPI.DLL has changed in version
3.5. BSAPI.DLL up to version 3.0 always returned all templates in the legacy format. Since
BSAPI.DLL 3.5, enrollment process results in alpha multi-template and verification templates are
always beta. Future BSAPI versions might switch to another and even yet undefined template format.

BSAPI 3.5 is able to take any of the listed template types on input. When comparing two templates
with ABSVerifyMatch function, each of the input templates can have different format. So typically
you don't need to care from which version the template originates.

If you really need a specific format of the template, e.g. when you need the template to pass to
another library (not part of BSAPI SDK), not supporting too new template types, you may use BCLIB
library. BCLIB is now provided as a part of the BSAPI SDK. It provides an interface for converting
among various template format types. However remember that some conversions might imply partial
data loss of the template, and not all conversions are supported (for example converting legacy to
beta is not supported). Refer to documentation of the BCLIB for more information about this topic.

Document Title Here Document Title Here Document Title Here

Page 80 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

Document Title Here Document Title Here

Document Title Here

Page 81 of 81

info@acs.com.hk
www.acs.com.hk

AET65 API
Version 1.0

8.6. Compatibility with Windows NT Services
Since version 3.5 BSAPI.DLL provides new function ABSInitializeEx, taking a bitmask flags as its
only parameter. This function can be (on Windows platform) used to initialize in a mode compatible
with Windows NT service.

8.7. ABS_CALLBACK and Threads
Callbacks from interactive operations are now guaranteed to be called from the same thread context,
where the interactive operation has been called. This is especially important for developers which use
BSAPI.DLL from a programming language without any support for multithreading, e.g. MS
VisualBasic.

8.8. Support for Terminal and Citrix
In future, BSAPI shall support opening devices in a context of remote session via Windows Terminal
Services and Citrix. This support is not yet included in current BSAPI version, but there are some new
aspects of BSAPI in order to make the change in the future smoother.

The support (when implemented) shall mean that when the process using BSAPI will be running in a
remote session, opening a fingerprint sensor device will be opened on the client's side!

Currently when you attempt to open the device in the context of the remote session, the BSAPI call
fails with an internal error, which roughly means that the situation has been detected, and that the
BSAPI call fails as the feature is not finished yet.

However there is a new initialization flag ABS_INIT_FLAG_FORCE_LOCAL_SENSOR, which can be
passed into ABSInitializeEx function. When used, the detection of remote sessions is disabled
and BSAPI always opens only local devices. This flag is already fully implemented. I.e. using this flag
currently prevents BSAPI from returning the internal error, and in future it will force BSAPI to use the
local sensors and never remote sensors.

When the user's session is not remote, the flag has no effect and BSAPI always uses local sensors.

	1.0. Introduction
	2.0. BSAPI
	2.1. Terminology
	2.2. Overview
	2.3. Architecture
	2.4. Naming Conventions

	3.0. BSAPI.DLL Functions
	3.1. General Description
	3.1.1. Error Handling
	3.1.2. Memory Management
	3.1.3. Interactive Operations
	3.1.4. Multi-threading
	3.1.5. Anti-latent Checking

	3.2. Application General Functions
	3.2.1. ABSInitialize
	3.2.2. ABSInitializeEx
	3.2.3. ABSTerminate
	3.2.4. ABSOpen
	3.2.5. ABSClose
	3.2.6. ABSEnumerateDevices
	3.2.7. ABSGetDeviceProperty
	3.2.8. ABSFree

	3.3. Biometric Functions
	3.3.1. ABSEnroll
	3.3.2. ABSVerify
	3.3.3. ABSVerifyMatch
	3.3.4. ABSCapture
	3.3.5. ABSCheckLatent
	3.3.6. ABSNavigate

	3.4. Image Grabbing Functions
	3.4.1. ABSGrab
	3.4.2. ABSRawGrab
	3.4.3. ABSListImageFormats
	3.4.4. ABSGrabImage
	3.4.5. ABSRawGrabImage

	3.5. Miscellaneous Functions
	3.5.1. ABSCancelOperation
	3.5.2. ABSSetAppData
	3.5.3. ABSGetAppData
	3.5.4. ABSSetSessionParameter
	3.5.5. ABSGetSessionParameter
	3.5.6. ABSSetGlobalParameter
	3.5.7. ABSGetGlobalParameter
	3.5.8. ABSSetLED
	3.5.9. ABSGetLED
	3.5.10. ABSBinarizeSampleImage
	3.5.11. ABSGetLastErrorInfo
	3.5.12. ABSEscape

	4.0. BSGUI.DLL Functions
	4.1. Using BSGUI.DLL
	4.2. GUI Customization
	4.3. Default Callback Implementation
	4.3.1. ABSDefaultCallback

	4.4. ABS_DEFAULT_CALLBACK_CONTEXT
	4.5. Flags for ABS_DEFAULT_CALL BACK_CONTEXT (ABS Default_CALLBACK_FLAG_xxxx)

	5.0. Declarations
	5.1. Basic Types
	5.2. Specific Types
	5.2.1. ABS_DATA
	5.2.2. ABS_BIR_HEADER
	5.2.3. ABS_BIR
	5.2.4. ABS_OPERATION
	5.2.5. ABS_PROFILE_DATA
	5.2.6. ABS_SWIPE_INFO
	5.2.7. ABS_IMAGE_FORMAT
	5.2.8. ABS_IMAGE
	5.2.9. ABS_PROCESS_DATA
	5.2.10. ABS_PROCESS_BEGIN_DATA
	5.2.11. ABS_PROCESS_PROGRESS_DATA
	5.2.12. ABS_PROCESS_SUCCESS_DATA
	5.2.13. ABS_NAVIGATION_DATA
	5.2.14. ABS_DEVICE_LIST_ITEM
	5.2.15. ABS_DEVICE_LIST
	5.2.16. ABS_CALLBACK

	6.0. Specific Constants
	6.1. Flags for ABSInitializeEx (ABS_INIT_FLAG_xxxx)
	6.2. Flags for ABS_OPERATION (ABS_OPERATION_FLAG_xxxx)
	6.3. Flags for Biometric and Image Grabbing Functions (ABS_FLAG_xxxx)
	6.4. Template Purpose Constants (ABS_PURPOSE_xxxx)
	6.5. Key Constants for ABS_PROFILE_DATA (ABS_PKEY_xxxx)
	6.6. ABS_PKEY_IMAGE_FORMAT Values (ABS_PVAL_IFMT_xxxx)
	6.7. ABS_PKEY_REC_TERMINATION_POLICY Values (ABS_PVAL_RTP_xxxx)
	6.8. ABS_PKEY_REC_SWIPE_DIRECTION Values (ABS_PVAL_SWIPEDIR_xxxx)
	6.9. ABS_PKEY_REC_NOISE_ROBUSTNESS Values (ABS_PVAL_NOIR_xxxx)
	6.10. ABS_PKEY_SENSOR_SECURITY_MODE values (ABS_PVAL_SSM_xxxx)
	6.11. Swipe Info Flags (ABS_SWIPE_FLAG_xxxx)
	6.12. Process Constants (ABS_PROCESS_xxxx)
	6.13. Device Property Constants (ABS_DEVPROP_xxxx)
	6.14. Session and Global Parameter Constants (ABS_PARAM_xxxx)
	6.15. Parameter ABS_PARAM_CONSOLIDATION_TYPE Values (ABS_CONSOLIDATION_xxxx)
	6.16. Parameter ABS_PARAM_MATCH_LEVEL Values (ABS_MATCH_xxxx)
	6.17. Parameter ABS_PARAM_ANTISPOOFING_POLICY Values (ABS_ANTISPOOFING_xxxx)
	6.18. Callback Message Codes (ABS_MSG_xxxx)

	7.0. List of Defined Result Codes
	8.0. New Features in Version 3.5
	8.1. Global Parameter ABS_PARAM_IFACE_VERSION
	8.2. Dynamic Enrollment
	8.2.1. Global Parameter ABS_PARAM_CONSOLIDATION_COUNT
	8.2.2. Structure ABS_PROCESS_BEGIN_DATA
	8.2.3. Structure ABS_PROCESS_PROGRESS_DATA
	8.2.4. Constant ABS_PROCESS_CONSOLIDATE

	8.3. Image Grabbing Functions
	8.3.1. Constant ABS_FLAG_HIGH_RESOLUTION
	8.3.2. Structure ABS_IMAGE
	8.3.3. New Grabbing Functions

	8.4. Global Parameter ABS_PARAM_POWER_SAVE_CHECK_KEYBOARD
	8.5. Internal Template Format Types
	8.6. Compatibility with Windows NT Services
	8.7. ABS_CALLBACK and Threads
	8.8. Support for Terminal and Citrix

